

A Technical History of the SEI

Larry Druffel

January 2017

SPECIAL REPORT
CMU/SEI-2016-SR-027

SEI Director’s Office

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

http://www.sei.cmu.edu

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer-
ing Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by Carnegie Mellon University or its Software Engineering Institute.

This report was prepared for the
SEI Administrative Agent
AFLCMC/PZM
20 Schilling Circle, Bldg 1305, 3rd floor
Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE
OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribu-
tion. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distrib-
uted in written or electronic form without requesting formal permission. Permission is required for any
other external and/or commercial use. Requests for permission should be directed to the Software En-
gineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Architecture Tradeoff Analysis Method®,ATAM®, Carnegie Mellon®, CERT®,CERT Coordination
Center®, FloCon® and OCTAVE® are registered marks of Carnegie Mellon University.

COTS Usage Risk EvaluationSM, CURESM, EPICSM, Evolutionary Process for Integrating COTS-Based
SystemsSM, Framework for Software Product Line PracticeSM, IDEALSM, Interim ProfileSM, OARSM,
Operationally Critical ThreatSM, AssetSM, and Vulnerability EvaluationSM, Options Analysis for Reen-
gineeringSM, Personal Software ProcessSM, PLQLSM, PLTPSM, Product Line Quick LookSM, Product
Line Technical ProbeSM, PSPSM, SCESM, SEPGSM, SoS NavigatorSM, T-CheckSM, Team Software Pro-
cessSM and TSPSM are service marks of Carnegie Mellon University.
DM-0003942

mailto:permission@sei.cmu.edu

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Table of Contents

Foreword xi

Preface xix

Abstract xxi

1 Introduction 1
 Introduction 3

 The DoD Software Environment in 1984 Motivated Formation of the SEI 3
 SEI Charter—Improve the State of the Practice of Software Engineering 4
 Software Engineering Context into Which SEI was Formed and Evolved 6
 The SEI Began by Interpreting the Charter and Developing a Technical Strategy 6
 Interpreting the Charter 7
 Evolution of the Effort Composition Was Driven by Experience and Guidance from

the Principal Sponsor 8
 The SEI Proposes Work Based on an Evolving Technical Strategy 11
 Mechanisms for Engaging the Community 12
 References 13

2 Real-Time Embedded Systems Engineering 15
 Introduction to Real-Time Embedded and Cyber-Physical Systems 19

 The SEI Contributed to Early DoD Ada Adoption Effort for Real-Time Embedded
Systems 19

 The SEI Provided an Engineering Basis for Real-Time Systems Development 21
 SEI Research Included Software for Parallel Hardware Architectures 22
 The SEI Developed Analytic Techniques and Supporting Tools for Engineering

Real-Time Systems 22
 SEI Contributions to Standards 24
 Summary 25
 References 25

 Ada/Real-Time Embedded Systems Testbed 27
 The Challenge: Evaluating Runtime Performance on Embedded Processors 27
 A Solution: A Testbed for Real-Time Performance Evaluation 27
 The Consequence: Empirical Results for Runtime Performance Hypotheses 28
 The SEI Contribution 29
 References 29

 Distributed Ada Real-Time Kernel 31
 The Challenge: Provide Consistent Support for Ada in Real-Time Systems 31
 A Solution: A Distributed Ada Real-Time Kernel 31
 The Consequence: A Prototype Demonstration 31
 The SEI Contribution 32
 References 32

 Ada Adoption Handbook 33
 The Challenge: Where and When to Adopt Use of the Ada Language 33
 A Solution: The Ada Adoption Handbook 33
 The Consequence: Unbiased Guidance 34
 The SEI Contribution 34
 References 34

 Rate Monotonic Analysis 36
 The Challenge: Predicting Real-Time Systems’ Ability to Meet Performance

Deadlines 36

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 A Solution: Rate Monotonic Analysis 36
 The Consequence: Engineering Replaces Art 37
 The SEI Contribution 38
 References 39

 Simplex Architecture 40
 The Challenge: Ensuring the Integrity of Safety-Critical Systems 40
 A Solution: The Simplex Architecture 40
 The Consequence: Increased Reliability of Safety-Critical Systems 41
 The SEI Contribution 41
 References 42

 Software for Heterogeneous Machines 43
 The Challenge: Meeting Performance Goals for Real-Time Applications Involving

Heterogeneous Machines 43
 A Solution: Software for Heterogeneous Machines (Durra) 43
 The Consequence: Successful Demonstration in Prototype Systems 44
 The SEI Contribution 44
 References 44

 Real-Time Multicore Scheduling 46
 The Challenge: Taking Advantage of Multicore Chips 46
 A Solution: Real-Time Scheduling for Multicore Processors 46
 The Consequence: Effective Use of Multicore Processors 47
 The SEI Contribution 48
 References 48

 Integrated Methods for Predictive Analytic Composition and Tradeoff 50
 The Challenge: Effective Real-Time Performance in Dynamic Environments 50
 A Solution: Development of Analytic Methods 50
 The Consequence: Bringing an Analytic Basis to Engineering Dynamic Systems 52
 The SEI Contribution 52
 References 53

 Architecting Software-Reliant, Safety-Critical Systems with SAE AADL 54
 The Challenge: Reducing Faults in Safety-Critical Defense Systems 54
 A Solution: SAE Architecture Analysis & Design Language (AADL) 54
 The Consequence: Architecture-Centric Engineering Beyond Documentation 55
 The SEI Contribution 56
 References 56

3 Education and Training 57
 Introduction to Education and Training 60
 Academic Curricula 60

 Curricula Transition 62
 Professional Education and Training 63
 Evolution of Instructional Delivery Based on Technology Advancements 64
 References 64

 Model Curriculum for Master of Software Engineering Degree 66
 The Challenge: The Need for a Standard Software Engineering Curriculum 66
 A Solution: Creation of the SEI Master of Software Engineering Curriculum

Guidelines 66
 The Consequence: New Academic Programs Established 67
 The SEI Contribution 67
 References 67

 Undergraduate Software Engineering Curriculum 69
 The Challenge: Lack of Curriculum Guidance for Undergraduate Software

Engineering Education 69
 A Solution: Development and Dissemination of Curriculum Guidance 69

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 The Consequence: Undergraduate Software Engineering Programs Established 70
 The SEI Contribution 71
 References 71

 Software Assurance Curriculum for Colleges and Universities 73
 The Challenge: Demand for Software Assurance Expertise 73
 A Solution: Educate Future Practitioners 73
 The Consequence: More Well-Qualified Software Assurance Professionals 74
 The SEI Contribution 75
 References 75

 Survivability and Information Assurance Education for System Administrators 77
 The Challenge: Adapting System Administration to the Unexpected and to

Business 77
 A Solution: Survivability and Information Assurance Curriculum 77
 The Consequence: System Administrators Who Support the Business Mission 78
 The SEI Contribution 78
 References 79

 Conference on Software Engineering Education and Training 80
 The Challenge: A Forum for Software Engineering Education Advances and

Collaboration 80
 A Solution: The Premier Conference on Software Engineering Education 80
 The Consequence: Growth of Conferences and Tracks on Software Engineering

Education 81
 The SEI Contribution 81
 References 82

 CMU Master of Software Engineering Program 83
 The Challenge: The Need for a Strong Academic Software Engineering Program 83
 A Solution: Creation of the CMU Master of Software Engineering Program 83
 The Consequence: New Academic Programs Established 84
 The SEI Contribution 84
 References 84

 Executive Education Program 85
 The Challenge: Effectively Managing Software Systems 85
 A Solution: Executive Education Program 85
 The Consequence: Improved Management by Executives 86
 The SEI Contribution 86
 References 86

 Professional Training 87
 The Challenge: Providing High-Quality Training to Software Practitioners 87
 A Solution: Quality Assurance for SEI Training Products 87
 The Consequence: SEI Results Move from Research into Practice 88
 The SEI Contribution 88

 Education and Training Delivery Platforms 89
 The Challenge: Deliver Education and Training to Large, Geographically

Dispersed Audiences 89
 A Solution: Take Advantage of Changing Technologies 89
 The Consequence: Software Engineering Is Adopted as a Discipline 90
 The SEI Contribution 90
 References 90

 Technology for Cyber Workforce Development 92
 The Challenge: Training the Cyber Workforce in a Rapidly Changing World 92
 A Solution: Virtual Training Technology for Individuals and Teams 92
 The Consequence: Unified Platform for Cyber Workforce Development 93
 The SEI Contribution 94
 References 94

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4 Management 97
 Introduction to Management 101

 Management of the Software Process 101
 Support for Acquisition Offices 102
 Maturity Profile 102
 Expansion of Maturity Modeling 102
 The People CMM 103
 The Systems Engineering CMM (SE-CMM) 103
 The CERT Resilience Management Model 103
 Integration of Maturity Modeling 104
 Smart Grid Maturity Model: A New Approach for Utilities 104

 Characterizing Software Risks 105
 Bringing Discipline to Software Development Activities 105
 Measurement and Analysis 106
 References 107

 The Capability Maturity Model for Software 110
 The Challenge: Consistent and Predictable Management of Software

Development. 110
 A Solution: The Capability Maturity Model for Software 110
 The Consequence: A Revolutionary International Movement 111
 The SEI Contribution 112
 References 112

 Appraisal Methods 114
 The Challenge: Predicting Software Engineering Performance 114
 A Solution: Assessing the Capability of Contractors 114
 The Consequence: Reduced Risk in Selecting Contractors 115
 The SEI Contribution 116
 References 116

 Maturity Profile 118
 The Problem: Lack of Data on Use of SEI Models and Appraisal Results 118
 A Solution: Community Maturity Profile 118
 The Consequence: Reliable Source of Data for the Community 119
 The SEI Contribution 119
 References 119

 The People Capability Maturity Model 121
 The Challenge: Assessing and Improving Workforce Capability 121
 A Solution: The People CMM 121
 The Consequence: A Competent Workforce That Can Meet Business Goals 122
 The SEI Contribution 123
 References 123

 Managing Operational Resilience 124
 The Challenge: Delivering Essential Services in the Presence of Stress and

Disruption 124
 A Solution: Convergence of Operational Risk Disciplines That Accelerated the

SEI’s Ability to Tackle Resilience 124
 The Consequence: Organizations Can Determine Their Capability to Manage

Resilience 126
 The SEI Contribution 126
 References 126

 Capability Maturity Model Integration 128
 The Challenge: Developing a Single Framework for Process Improvement 128
 A Solution: The Capability Maturity Model Integration 128
 The Consequence: CMMI Models Are Used Effectively Worldwide 130
 The SEI Contribution 130

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY v
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 References 131
 Expanding the CMMI Product Suite to the Acquisition Area of Interest 133

 The Challenge: Meeting Acquisition Needs with the CMMI Product Suite 133
 A Solution: CMMI-ACQ – A Full Acquisition Solution 133
 The Consequence: Acquisition Joins Development for Process Improvement 135
 The SEI Contribution 135
 References 135

 The Smart Grid 137
 The Challenge: The Need for New Approaches for Utilities 137
 A Solution: Smart Grid Model and Transformation Process 137
 The Consequence: Effective Method for Utilities’ Transition to the Smart Grid 138
 The SEI Contribution 138
 References 139

 Software Risk Management 140
 The Challenge: Assessing and Managing Software Risks 140
 A Solution: Apply Risk Management Techniques to Software 140
 The Consequence: A Disciplined Approach to Identifying and Managing

Software Risks 142
 The SEI Contribution 142
 References 142

 Personal Software Process and Team Software Process 144
 The Challenge: Improving Software Quality During Development 144
 A Solution: Personal Software Process and Team Software Process 144
 The Consequence: Improved Quality at the Individual and Team Levels 145
 The SEI Contribution 146
 References 147

 Measurement and Analysis 149
 The Challenge: Measuring Software Development Capabilities and Products 149
 A Solution: Approaches for Collecting and Analyzing Data 149
 The Consequence: Effective, Quantitative Basis for Improvement 150
 The SEI Contribution 150
 References 150

 Developing a Measurement System That Supports an Organization’s Goals 152
 The Challenge: Software Project Measurements That Support Business Goals 152
 A Solution: Goal-Driven Software Measurement—Goal-Question-Indicator 152
 The Consequence: Successful Measurement Processes That Support an

Organization’s Business Goals 153
 The SEI Contribution 154
 References 154

5 Security 157
 Introduction to Security 161

 Genesis of the CERT Coordination Center 161
 Evolution of the CERT Division 163
 Range of Issues 163
 References 165

 CERT Coordination Center 166
The Challenge: Responding to Internet Security Incidents 166

 A Solution: Coordinating Incident Response 166
 The Consequence: Knowledgeable Incident Responders, Coordinated

Response 168
 The SEI Contribution 168
 References 168

 Vulnerability Analysis and Remediation 170

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vi
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 The Challenge: Software Vulnerabilities 170
 A Solution: Vulnerability Analysis, Remediation, and Discovery 170
 The Consequence: Improved Vendor Practices, Well-Informed System

Mangers 171
 The SEI Contribution 172
 References 172

 Malicious Code Analysis 173
 The Challenge: Malicious Code 173
 A Solution: Malicious Code Database and Analysis 173
 The Consequence: Faster Response to Malicious Code Attacks, Better Control 174
 The SEI Contribution 174
 References 175

 Secure Coding 177
 The Challenge: Preventing Software Vulnerabilities 177
 A Solution: Secure Coding Standards and Practices 177
 The Consequence: More Secure Products 179
 The SEI Contribution 179
 References 180

 Network Situational Awareness 181
 The Challenge: Visibility of Large Networks 181
 A Solution: Network Situational Awareness Tools and Techniques 181
 The Consequence: Improved Situational Awareness with SEI Tools 182
 The SEI Contribution 182
 References 183

 Insider Threat 184
 The Challenge: Cyber Attacks by Insiders 184
 A Solution: Insider Threat Research and Solutions 184
 The Consequence: Improved Insider Threat Detection and Response 186
 The SEI Contribution 186
 References 186

 Information Security Assessments 188
 The Challenge: Managing Risks to Enterprise-Wide Information Security 188
 A Solution: Managing Risks to Enterprise-Wide Information Security 188
 The Consequence: Enterprise Risk Management and Security Improvement 189
 The SEI Contribution 190
 References 190

 Cybersecurity Engineering 192
 The Challenge: Software Security Assurance 192
 A Solution: Build In Security from the Start 192
 The Consequence: Improved Software Development and Acquisition Practices 194
 The SEI Contribution 194
 References 195

6 Software Engineering Methods 197
 Introduction to Software Engineering Methods 199

 Demands of Increasing Reliance on Software Systems 199
 Evolving Software Configuration Management 199
 Developing Community Standards: Computer-Aided Software Engineering 199
 Developing Community Standards: Open Systems Engineering 199
 Aiding Understanding of Expanding Technology 200
 Managing and Engineering COTS-Based Systems 200
 Assurance Cases: Addressing Systems of Systems Challenges 201
 References 202

 Configuration Management 203

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vii
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 The Challenge: Configuration Support for Software Developers 203
 A Solution: Configuration Management Tools 203
 The Consequence: Configuration Management and CM Tools in Common

Practice 204
 The SEI Contribution 205
 References 205

 CASE Environments 207
 The Challenge: Making Smart Decision on Tools and Environments 207
 A Solution: CASE Tool Integration 207
 The Consequence: CASE Tools Widely Used in Practice 208
 The SEI Contribution 209
 References 209

 Software Technology Reference Guide 211
 The Challenge: Effective Software Technology Adoption 211
 A Solution: Software Technology Reference Guide 211
 The Consequence: Unbiased Information Used for Selecting Technology 211
 The SEI Contribution 212
 References 212

 Reengineering 213
 The Challenge: Legacy Software in Defense Systems 213
 A Solution: A Reengineering Center 213
 The Consequence: Effective Decision Making About Reengineering 214
 The SEI Contribution 214
 References 214

 Building and Fielding Interoperating Systems 216
 The Challenge: Interoperability in Evolving Defense Systems 216
 A Solution: Multi-Faceted Approach to Support for Interoperation 216
 The Consequence: Well-Informed Decisions Using Tools and Techniques 218
 The SEI Contribution 218
 References 218

 Developing Systems with Commercial Off-the-Shelf Products 221
 The Challenge: Using Commercial Off-the-Shelf Products in Defense Systems 221
 A Solution: Tools and Guidance for Improved Use of COTS Products 221
 The Consequence: Effective Use of COTS Products 222
 The SEI Contribution 223
 References 223

 Assurance Cases 226
 The Challenge: Confidence in the Behavior of Performance-Critical Systems 226
 A Solution: Assurance Cases 226
 The Consequence: Assurance Cases Used in Practice 227
 The SEI Contribution 227
 References 228

7 Architecture 229
 Introduction to Software Architecture 233

 Seemingly Independent Efforts Prepared the SEI for an Early Consideration of
Software Architecture 233

 Emergence of Architecture as a Separate and Well-Defined Area 235
 Introduction of the Notion of Software Product Lines and Associated Practices 236
 Broad Use of SEI Approaches to Software Architecture 237
 References 238

 Structural Modeling 241
 The Challenge: Efficiently Replicating Aircrew Trainers 241
 A Solution: Structural Modeling 241

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY viii
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 The Consequence: Efficient Reuse of a Reference Model for Aircrew Trainers 242
 The SEI Contribution 243
 References 243

 Federal Aviation Administration Study 245
 The Challenge: Evaluate a Problematic FAA System Under Development 245
 A Solution: SEI Architecture Evaluation Methods 245
 The Consequence: Successful FAA System Upgrade 246
 The SEI Contribution 246
 References 247

 Reducing the Cost of Modifying the User Interface 248
 The Challenge: Cost-Effectively Modifying User Interfaces for Defense Systems 248
 A Solution: The Serpent User Interface Management System 248
 The Consequence: Understanding the Relationship Between the User Interface

and Software Architecture 249
 The SEI Contribution 249
 References 250

 Software Architecture Analysis Method 251
 The Challenge: Predicting Systems Development Problems in Advance 251
 A Solution: The Software Architecture Analysis Method 251
 The Consequence: Robust Multi-Quality Architectural Evaluation Method 252
 The SEI Contribution 252
 References 253

 Quality Attributes 255
 The Challenge: Meet the Non-Functional Requirements of Software Systems 255
 A Solution: Focus on Tradeoffs Among Quality Attributes 255
 The Consequence: Quality Attributes Reliably Identified, Added to

Specifications 256
 The SEI Contribution 256
 References 256

 Architecture Tradeoff Analysis Method 258
 The Challenge: Determining the Best Architectural Design for Defense Systems 258
 A Solution: The Architecture Tradeoff Analysis Method 258
 The Consequence: Effective Evaluation of Architecture Designs 259
 The SEI Contribution 259
 References 260

 Feature-Oriented Domain Analysis 262
 The Challenge: Achieve Cost Reductions By Means of Software Reuse 262
 A Solution: Feature-Oriented Domain Analysis 262
 The Consequence: Application to Reuse and a Product Lines Approach 263
 The SEI Contribution 263
 References 264

 Software Product Lines 265
 The Challenge: Achieve Reuse That Pays 265
 A Solution: Software Product Lines 265
 The Consequences: Product Line Use Expands and Provides Benefits 267
 The SEI Contribution 267
 References 267

8 Forensics 269
 Introduction to Computer Forensics: Digital Intelligence and Investigation 273

 SEI Entry into Digital Intelligence and Investigation 273
 Evolution of the SEI Approach 273
 Influence on the State of the Practice 274
 Keeping Up with Changes in Cybercrime 274

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ix
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 References 275
 Operational Support for Digital Intelligence and Investigation 276

 The Challenge: Catching and Convicting Perpetrators of Cyber Attacks 276
 A Solution: Tools and Techniques for Digital Investigations 276
 The Consequence: Cyber Attackers Are Caught and Prosecuted 277
 The SEI Contribution 277
 References 277

 Digital Intelligence and Investigation Methods and Tools 279
 The Challenge: Effective and Efficient Cyber Forensics 279
 A Solution: Tools and Methods that Improve the State of the Practice 279
 The Consequence: Cyber Criminals Are Caught Early and Prosecuted 280
 The SEI Contribution 280
 References 281

9 The Future of Software Engineering 283
 A Vision of the Future of Software Engineering 285

 Software and Defense 285
 The SEI Role 286
 Looking Ahead 286
 Reference 292

10 Conclusion 293
 Leading the Community 294
 Highlighting 30 Years of Contributing to DoD Software Capability 295

 Real-Time Embedded and Cyber-Physical Systems 295
 Software Engineering Education and Training 295
 Management 296
 Security 296
 Engineering Methods 297
 Software Architecture 297
 Computer Forensics 298

 Direct Support to Government Systems Developers 299
 References 300

 An Experienced Staff Well Positioned to Continue Leadership 300
 External Evaluations by DoD Sponsor 300
 A Vision for the Future of Software Engineering 302

 References 302

Appendix Authors Contributing to this Report 303

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY x
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

List of Figures

Figure 1: Balance of SEI Activities 10

Figure 2: Technology Transition Continuum 10

Figure 3: Real-Time Embedded Systems Engineering Timeline 17

Figure 4: Education and Training Timeline 59

Figure 5: Management Timeline 99

Figure 6: Security Timeline 159

Figure 7: Architecture Timeline 231

Figure 8: Forensics Timeline 271

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xi
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Foreword

Angel Jordan
University Professor Emeritus, Provost Emeritus
Carnegie Mellon University

This report chronicles the technical contributions of the Software Engineering Institute (SEI)
since its inception in 1984. It is published at an opportune time, the 30th anniversary of the SEI’s
formation.

I am writing this foreword as a close observer of the institute from the beginning. Over the years,
I have had the opportunity to observe the institute as provost of Carnegie Mellon University
(CMU), twice as acting director of the SEI, as University Professor Emeritus, and now, regularly,
as just a helper providing advice as needed to division directors and members of the technical
staff in their interactions with faculty members on the campus of CMU. The report provides a
comprehensive account of the SEI’s programs, activities, and initiatives during its existence. It is
comprehensive, but not exhaustive. To enumerate and describe in more detail the numerous pro-
grams, projects, activities, publications, etc., of an institution that has a relatively long, rich his-
tory and a great deal of accomplishments would be a daunting task and beyond the scope of the
report.

The introduction gives a crisp description of the SEI, enumerating its key sponsor, its parent insti-
tution, and key members of its staff at its inception. It continues with a section describing briefly
its formation, its early history, and its evolution over the years as an organization. In this part of
the report, the reader will find that changes in the leadership took place several times, with at-
tendant changes in strategies.

In seven chapters, the report chronicles key contributions to software engineering in architecture,
education and training, real-time embedded systems, software engineering methods, forensics,
management, and security. In the section titled “The Future of Software Engineering,” the past
three chief technical officers, Bill Scherlis, Doug Schmidt, and Kevin Fall, venture to give their
own account of the field in the future. The report is not the end of the story. It is just the first in-
stallment. It captures the SEI strategy and also discusses developments outside the SEI.

As described in the introduction, the Software Engineering Institute is a federally funded research
and development center (FFRDC) sponsored by the U.S. Department of Defense (DoD), through
the Office of the Under Secretary of Defense for Acquisition and Technology at the time, 1984.
The SEI contract was competitively awarded to Carnegie Mellon University in December 1984.
The DoD established the SEI to advance the practice of software engineering because quality soft-
ware that is produced on schedule and within budget was deemed to be a critical component of
U.S. defense systems. In fact, it was widely believed at the time that there was a crisis in software
production and the SEI was to be created as a national resource in software engineering and tech-
nology to mitigate that crisis.

As eloquently described, prior to 1984 there were a number of commissions calling for the crea-
tion of a Software Engineering Institute funded by the DoD. Members of these commissions came

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xii
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

from the government, industry, and academic institutions prominent in computer science and soft-
ware engineering. As conceived, the Software Engineering Institute was to be administered by a
university and chartered as an FFRDC. A model of an FFRDC, albeit in other technologies, was
the Lincoln Laboratory, administered by the Massachusetts Institute of Technology and funded by
the DoD. In 1984 there had been no new FFRDCs formed in 20 years.

When the competitive process was established, a number of universities with expertise in software
engineering responded with well-conceived proposals. The responding teams from the different
institutions were well coordinated, and the communities where those institutions resided orches-
trated powerful lobbying campaigns. Carnegie Mellon University did not fall short in attracting
political support from its congressional delegation in Pennsylvania and other states with academic
institutions allied with Carnegie Mellon University in the quest to attract the SEI.

It was then when, as provost of CMU, I played a role on behalf of the SEI, spearheading the lob-
bying campaign and leading the team of computer scientists to put together a strong proposal and
assembling a meaningful team of computer scientists and technologists who would form the start-
ing nucleus of the SEI. A key part of the proposal was a strong board of visitors, made of promi-
nent people with very strong reputations, from universities (other than CMU), government, and
industry. The proposed acting director of the SEI was a respected computer scientist and software
engineer who was to head the Department of Computer Science at CMU. After the SEI was
launched and a permanent director was found, the acting director was to return to his academic
position. Ultimately he became the Dean of the School of Computer Science, formed in 1988
from computer-related disciplines at CMU: the Department of Computer Science, the Robotics
Institute, the Language Translation Center, precursor of the current Language Technology Insti-
tute, and other related units.

After the SEI was granted to CMU, key members of the institute were hired from inside CMU and
other institutions, including industry and government. Programs responding to the charter of the
SEI were formed and a number of initiatives were started, including a strong Industrial Affiliates
Program and an Educational Program to confer a Master of Science in Software Engineering. This
MS in Software Engineering, which served as a model in the country and abroad, was eventually
transferred to the Computer Science Department on campus and is now a successful program in
the Institute for Software Research (ISR) in the School of Computer Science.

The SEI started its operations in December 1984. The first contract for the first five years, 1985-
1990, was funded with $100 million. The contract was renewed in 1990 for another five years
with $150 million, and again in 1995 with the same amount. Eventually a permanent director was
attracted after a national search. After a year of operations under the leadership of the new direc-
tor, some difficulties arose owing in part to problems of assimilation and different cultures be-
tween the director, its members, and CMU. The director resigned and I, the provost, assumed the
acting directorship of the SEI, while continuing to direct the rest of the university, but closely ad-
vised by Larry Druffel. After equilibrium was established and the momentum of the SEI was re-
stored, Larry, at the time an executive in a software company in California (who had played a key
role in the original conception of the SEI while at the DoD), was attracted as director in 1986. Un-
der Larry, the SEI was propelled to a new trajectory toward becoming a national resource in soft-
ware engineering as conceived in its charter. He served for 10 years, and moved to another posi-
tion of leadership in another institution in another part of the country. A few years ago he returned

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xiii
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

to the SEI on a part-time basis as a visiting scientist playing an important role as advisor on strat-
egy. For his service to the SEI with distinction in different capacities, including the editorship of
this report, Carnegie Mellon owes him great gratitude.

The charter evolved and changed over the years to respond to changes in the environment in ac-
cord with the sponsoring organizations, on the watch of the following directors: Larry Druffel
(1986-1996), Stephen E. Cross (1996-2002), Angel Jordan (Acting Director in 2003), and Paul
Nielsen (2004-to date).

Over the three decades of its existence, the SEI has made many technical contributions to soft-
ware engineering for which we all can be justifiably proud. The SEI has a track record of leader-
ship in software engineering that has enabled the DoD to take advantage of technology improve-
ments. The report shows clearly that the SEI has not only had impact on specific DoD programs,
but has provided leadership to the broader computing community that has brought further devel-
opment that benefits the DoD. The SEI has also contributed greatly to defining software engineer-
ing as a discipline. With its actions and works, it has demonstrated the importance of technology
transition. Further, it has demonstrated that having a collection of software experts familiar with
research and technology trends, and becoming familiar with DoD needs, can develop technology
solutions to satisfy those anticipated needs.

The SEI offers an opportunity that is unique. The DoD challenged the university community to
formulate an approach to define the profession of software engineering and offered to fund the re-
sponse to the challenge. CMU accepted the challenge. What the DoD asks in return is that the SEI
focus on those software engineering problem areas that plague the DoD.

Although the SEI is not the lone player in that endeavor, many of our peers recognize that they
have a stake in the outcome and are motivated to help, whether out of commitment to the profes-
sion, because of a personal desire for recognition, or simply to influence the SEI’s thinking along
the lines important to that contributor. Consequently, we not only have an interesting and exciting
challenge, we have immediate access to leaders in our profession. In adopting the approach to
providing leadership in achieving consensus, we thereby encourage the community to participate
actively in our endeavors, making them our partners.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xiv
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Robert J. Kent
President of SOSSEC Inc.

In the summer of 1984, I was a program manager in the United States Air Force Electronic Sys-
tem Division at Hanscom Air Force Base in Massachusetts. I was given a directive to establish a
DoD Software Engineering Institute to address the perceived software crisis in the development of
mission-critical DoD systems. The following was to be the mission:

The Software Engineering Institute (SEI) shall provide this: bring the ablest professional
minds and the most effective technology to bear on rapid improvement of the quality of oper-
ational software in mission-critical computer systems. The Institute shall accelerate the re-
duction to practice modern software engineering techniques and methods and shall promul-
gate use of modern techniques and methods to help the mission-critical systems. The Institute
shall establish standards of excellence for software engineering practice.

During 1985, a competitive source selection process was undertaken by the Department of De-
fense to select a university team to address the mission of the SEI and its establishment as a feder-
ally funded research and development center. Seven university teams competed for the award of
the DoD’s SEI. Of these, Carnegie Mellon University in Pittsburgh, Pennsylvania, emerged as the
leading candidate after an exhaustive selection process. CMU’s vision for the Institute was con-
sidered outstanding and its past history in engineering science was more than expected. CMU was
subsequently awarded a five-year, $100 million contract that has renewed every five years up to
this date and is going through the renewal process this year.

At the outset, the Institute, which was headquartered on the campus of CMU, had trouble with
startup due to various pressures from the DoD, the academic community, and industry. These
pressures resulted in the replacement of two directors in the first year of operation, stalling the
SEI’s effectiveness. At this point, in 1986, Dr. Larry Druffel was selected to be the director of the
SEI. Larry brought not only an outstanding background in the science of engineering but a pas-
sion for the vision and a leadership style that was able to harmonize the various cultures and agen-
das surrounding the SEI. Over the following 10 years, Larry was able to revamp the very nature
and methods by which the DoD approached software-intensive systems. One of his achievements
was to bring focus to the SEI’s specific initiatives aimed at improving engineering capabilities.
One of these initiatives led to the development of the software maturity model and the process
models derived from it. They have stood the test of time and have fundamentally changed the in-
dustry. It was Larry’s early innovations that set the course for this revolution.

This report details the evolution of the SEI from its inception to today, and how Larry was able to
establish the SEI as a national asset in software engineering. His legacy, which now has been
passed through three additional generations of capable and visionary leaders, has been lasting and
the Institute continues to lead the nation in software engineering under the able guidance of Dr.
Paul Nielsen. Larry has continued to be involved in each generation of leadership as a special ad-
visor so his vision continues to set the sense and direction for the SEI. Anyone who has an interest
in the evolution of software engineering should read this report.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xv
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Blaise Durante
Deputy Assistant Secretary for Acquisition Integration for the Air Force

As the SEI develops a history of its technical contributions, I believe it would be helpful for the
reader to understand how the SEI has helped the Air Force and other military departments from a
user’s perspective, rather than simply from a technical perspective. In my role as Deputy Assistant
Secretary for Acquisition Integration for the Air Force, I have always been concerned with the Air
Force’s ability to acquire software-intensive systems responsibly. In general, our acquisition man-
agers are experts in specific application areas such as aeronautics, avionics, unmanned aerial vehi-
cles (UAVs), satellite control, communications systems, and weapons control, but not in software
technology. While our acquisition managers may have some knowledge of software, they do not
in general have a deep understanding of software development and are most certainly not software
engineers. I have worked with the SEI to provide guidance to these program managers. The SEI
has helped many individual programs, but the challenge has been to translate the lessons learned
from those individual programs to more general guidance applicable across the range of Air
Force, and ideally, other DoD applications. In the 10 years since I first challenged the SEI to help
these program managers, the SEI has made significant contributions in four general areas.

Evaluating and Assessing Program Execution

The SEI has developed and employed effective, repeatable methods to evaluate the execution of
software-intensive systems acquisition programs, identify problem areas, and provide actionable
recommendations for improvement.

Process In-Execution Reviews (PIERs) are short-term independent evaluations of processes and
practices. The SEI worked with Air Force personnel to develop the PIER method based on the Ca-
pability Maturity Model Integration (CMMI) framework (independent of the Standard CMMI Ap-
praisal Method for Process Improvement [SCAMPI]), to provide a rapid, low-cost, targeted ap-
proach to evaluating process execution. The SEI has collaborated with program office teams to
conduct PIERs during both program execution and competitive down-select to verify that contrac-
tors are applying processes and operating consistent with the capability level described in their
proposals. PIER has enabled program managers to quickly obtain insight into contractor execution
and gain confidence about program cost, schedule, and quality, or to make necessary course cor-
rections before problems reach critical mass. The PIER method has been successfully deployed
within multiple Air Force acquisition programs, enabling program managers to take decisive ac-
tion regarding contractors’ technical and management performance.

Independent Technical Assessments (ITAs) are independent, comprehensive examinations of pro-
grams having difficulty, or needing help with special technical/acquisition areas, and are typically
requested by program executive officers (PEOs) and Air Force acquisition officials. ITA teams
interview program and contractor staff and analyze acquisition and technical work products to
characterize problems, identify root causes, and make recommendations for corrective action. The
SEI has, in some cases, supported follow-on efforts to improve system quality/performance and
software acquisition practices, and any follow-on assessments requested by the Assistant Secre-
tary of the Air Force (Acquisition) (SAF/AQ). The SEI technical staff has supported numerous
ITAs on Air Force programs to enable troubled software-intensive systems acquisitions to get
back on the right track.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xvi
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Adopting New Technical Approaches for Acquisition

The SEI continually evaluates new technologies and methods for their applicability to DoD acqui-
sition programs, and collaborates with DoD and program leadership to effectively address and ap-
propriately integrate these innovations.

Agile methods: In recent years, as Agile methods have matured, DoD contractors have begun
building internal Agile capabilities and initiated pilot usage efforts on DoD programs. Formal
DoD guidance, templates, and best practices have lagged and are not yet in place to address the
incorporation of these methods. The SEI has engaged in extensive research to identify lessons
learned across commercial and multiple DoD programs on the application of Agile methods and
has especially focused on the regulatory and policy environment surrounding DoD acquisitions.
Over the last several years, the SEI team has established a key leadership position in the DoD and
contractor community and leveraged this research to deliver technical notes1,2,3, educational
courses and materials, webinars, conference presentations, and direct program support to DoD
programs. The objective of these outreach efforts is to educate acquisition professionals about the
integration of Agile methods into programs and the successful management of contractor relation-
ships when these techniques are employed.

Service-oriented architecture (SOA) and business/acquisition systems: The SEI worked with the
Air Force to demonstrate service-oriented architecture concepts by leading a team of technical ex-
perts from several Air Force financial management programs of record in specifying, designing,
and prototyping a foundational service: a Program Master Relation Key (PMRK) service. PMRK
had the potential to become the authoritative source of the Acquisition Program Master List and
correctly link authoritative data from each system into an integrated picture of Air Force acquisi-
tions. This effort demonstrated the positive effects that a “disruptive” technology like SOA could
have on acquisition processes and how SOA might be used to resolve the limitations inherent in
stove-piped legacy business systems.

Support to Policy and Leadership Projects

The SEI is a trusted advisor on matters of software-related policy and leadership.

Technology Readiness Assessments (TRAs): At the request of SAF/AQ, the SEI has provided team
members for independent review teams/panels to support a large number of TRAs on space, com-
mand and control (C2), avionics, and weapons systems programs since 2007. In FY08-09, addi-
tional SEI staff participated on the TD-1-12 (Air Force Smart Operations–21, Developing and
Sustaining Warfighting Systems Core Process) team to develop recommendations on improving
the use of TRAs when considering software. The SEI staff involved in these efforts identified the

1 Agile Methods: Selected DoD Management and Acquisition Concerns,

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9769

2 SEI Agile Research Forum: Agile Methods: Agile Methods: Tools, Techniques, and Practices for
the DoD Community, http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=21728

3 Considerations for Using Agile in DoD Acquisition, http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=9273

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9769
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=21728
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=21728
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=21728

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xvii
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

synergy between the TRA team’s observations of Technology Readiness Levels (TRLs) as cur-
rently applied to software, and the TD-1-12 team’s efforts at adapting the TRA process to better
accommodate software and shared concerns appropriately. The TD-1-12 team’s report signifi-
cantly influenced the software-related content in the July 2009 revision of the TRA Deskbook.

Cyberspace Task Force: When the Office of the Chief of Staff of the Air Force (CSAF) and the
Office of the Secretary of the Air Force (SECAF) stood up a cyberspace task force to support the
provisional Air Force Cyber Command (AFCYBER), the SEI was tasked with aiding the task
force’s charter to comprehend and integrate Air Force efforts regarding cyberspace. The SEI team
developed a series of white papers for task force members on various topics in order to quickly
disseminate expertise in the cyber domain. As a part of this effort, the SEI also organized a two-
day cyberspace academic training and education workshop that brought Air Force leaders together
with cyber curricula experts from universities established in the field. This workshop emphasized
operational needs, training and development requirements, and strategic requirements. This over-
all effort helped set the stage for Air Force Cyber Operations within the acquisition community.

National Research Council Report: In FY11, SEI staff contributed to the National Research
Council (NRC) Committee on Examination of the U.S. Air Force’s Aircraft Sustainment Needs in
the Future and its Strategy to Meet Those Needs.4 The committee report identified critical tech-
nical, infrastructure, and policy issues (including software acquisition, development, and sustain-
ment) surrounding the sustainment of the Air Force’s aging aircraft fleet.

Policy/Standards Development: The SEI participates in the Air Force Strategic Software Improve-
ment Program (AFSSIP) Working Group. As a member of this group, the SEI has participated in
the development of the first version of the Air Force Software Guidebook, identified challenges in
Air Force software sustainment, and provided independent feedback to the Air Force on software-
related updates to the Defense Acquisition Guidebook and various Air Force instructions and
guidebooks.

Education and Training for the Acquisition Community

The SEI develops innovative professional development courses and publications relevant to—and
used by—all levels of acquisition professionals.

The SEI published The Adventures of Ricky and Stick: Fables in Software Acquisition in 2006,
and met with a strongly positive result from the acquisition community across the DoD. Ricky and
Stick presents common acquisition challenges in the form of fables illustrated by comic strips,
juxtaposed against the relevant portions of the 5000 series. Ricky and Stick remains a popular,
though unofficial, source of rich insight (and entertainment) for beginning program managers.

Software Acquisition Survival Skills (SASS): The SASS course uses a hands-on approach to intro-
duce program managers and PMO staff to the many specific challenges associated with the acqui-
sition of software-intensive systems. For each software challenge, the course provides background
information, ways to recognize problems, avoidance methods, and recovery techniques. SASS has
been taught to hundreds of participants at multiple program offices across the U.S. Air Force

4 The NRC report is available for download at http://www.nap.edu/catalog.php?record_id=13177

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xviii
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

(USAF) and the rest of the DoD. It has played a vital role in initial training and familiarization
with software-specific issues.

Software Concepts and Issues for Senior Leaders: As dependence on software increases and sys-
tems grow in size and complexity, a significant problem is that many senior acquisition personnel
are not aware of the software factors critical to system success and therefore lack the skills to re-
view programs at key milestones and determine that they are executable and on track. This course
helps to make senior leaders better aware of tradeoffs and critical success factors for the acquisi-
tion of software-intensive systems and to familiarize senior leadership with new/advanced tech-
niques that can pragmatically be applied to their programs. The SEI team originally developed the
course to support general officer transition into senior acquisition positions.

Consequence of SEI Support on Air Force Programs

As a direct result of SEI support for Air Force programs, the Air Force has been more effective in
utilizing new techniques and acquiring software-intensive systems. The SEI not only helped the
Air Force avoid or overcome significant technical difficulties with many of its programs, such as
GPS, F-22, Global Hawk, ALR-69A, IDECS, ABIDES, and B1 FIDL, it has also helped the Air
Force develop a cadre of acquisition managers who understand how to manage software-intensive
systems. The investments made in the SEI during my tenure have provided significant impact and
value to the acquisition community in both the short term (immediate program issues) and for the
future in terms of training and education and technology adoption. The SEI has certainly delivered
on its role as an FFRDC!

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xix
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Preface

This report chronicles the technical accomplishments of the Software Engineering Institute and its
impact on the Department of Defense software community, as well as on the broader software en-
gineering community. While it is historical in nature, the report is not a history per se; the focus is
on institutional technical accomplishments. While the SEI is nothing without the people who
make up the institution, the focus is on technical accomplishments rather than on the people who
produced those accomplishments.

Indeed, this report was motivated in part by the passing of two senior members of the SEI staff,
both SEI Fellows, within 18 months of one another. With their passing and the retirement of sev-
eral others came the realization that corporate memory of early accomplishments that led to the
current work would forever be lost. This led to the initiation of this project. However, the purpose
of this report is to focus on the accomplishments, leaving the discussion of the people involved
and their contributions for another time.

The technical accomplishments of the SEI are interwoven with the technical developments in the
broader software engineering community. In almost every case, the SEI was influenced by ideas
and collaborative participation from industry, university, and government people. In many cases,
the broader community was also influenced by SEI activities and developments. Just as software
engineering is not driven by a waterfall development model, neither was there a linear interaction
between the SEI and the software engineering community. It was, and is, truly interactive. Inside
the institution, it is equally difficult to attribute credit. Ideas are proposed in brainstorming ses-
sions, and filtered and refined by members of the staff. Therefore, rather than attribute specific
work to individuals, this report focuses on the technical accomplishments while attempting to
acknowledge the sources of influence. Attribution will follow the accepted practice of citing refer-
ences that can be found at the end of each section. Even that device is inadequate because so
much of the influence was through workshops and verbal interactions.

This report is intended for readers with varying technical backgrounds whose expertise is not in
software engineering but who are interested in the SEI technical contributions and their lineage.
Acronyms will be spelled out and technical jargon will be avoided to the extent possible. Software
engineers and students will find useful references in understanding how ideas evolved, as long as
they understand that the report is necessarily SEI-centric and does not always capture parallel de-
velopments elsewhere.

Organization

The report is organized by technical areas. The technical work and accomplishments are described
in the following chapters, which are organized into areas of importance to the mission of the SEI:
Real-Time Embedded Systems Engineering, Education and Training, Management, Security,
Software Engineering Methods, Architecture, and Forensics. These are not mutually exclusive
categories, and, indeed, there are intersections and overlaps.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xx
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

For each of the these areas a general introduction, supported by a timeline of activities, provides
insight into the rationale for the work and the ways in which ideas generated in prior work influ-
enced thinking in later work. Since much of the SEI work was influenced by ideas from outside
the SEI, that outside influence will be indicated where it was significant. Failure to recognize out-
side influence is more a factor of space available on the timelines than repudiation of that influ-
ence.

For each major activity shown on the timeline, a brief description will be provided following a
similar format:
• A summary of the problem that existed before the SEI engaged

• The idea that was the basis for improvement—where did it come from?

• The consequence—how is the technical environment different because of SEI effort?

• The views of experts outside the SEI who are familiar with the work, where available. Since
this report is written by SEI staff, it is useful to have validation by an outside perspective.

• A summary of the SEI contribution—what did the SEI do and what did the SEI not do?

Since this is not the end of the story—only the first volume—a section is included discussing the
current SEI technical strategy and offering some insight into trends that are likely to influence the
future of software engineering and, therefore, the future of the SEI.

Suggestions for Readers

A reader interested in gaining a general understanding of the SEI and its technical contributions
can find that general understanding by reading the introduction and conclusion. The introduction
provides the historical context and rationale for the SEI and its technical work. The conclusion
summarizes the major technical accomplishments. These two chapters assume little or no software
engineering background.

A reader interested in a more thorough understanding of the breadth of SEI work could add the
introduction to each of the chapters to the general introduction and conclusion. These section in-
troductions summarize the SEI work in seven different technical areas, along with the rationale.
While the section introductions assume some familiarity with the field of software engineering,
professionals in other fields should find them accessible.

A reader interested in discussion of SEI work in a specific area, such as software architecture or
security, might skip directly from the general introduction to the appropriate section introductions.

A reader interested in a more detailed treatment of a specific subject, such as rate monotonic
analysis or undergraduate software engineering curricula, might skip directly to the appropriate
subsection. Although these subsections are necessarily of a summary nature, they assume a tech-
nical background and provide citations to supporting literature.

However readers choose to read this, we hope they find this historical perspective of the SEI’s
work and its context interesting and informative.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xxi
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Abstract

This report chronicles the technical accomplishments of the Software Engineering Institute and its
impact on the Department of Defense software community, as well as on the broader software en-
gineering community. The technical accomplishments of the SEI are interwoven with the tech-
nical developments in the broader software engineering community. The described technical work
is organized into areas of importance to the mission of the SEI: Real-Time Embedded Systems,
Education and Training, Management, Security, Software Engineering Methods, Software Archi-
tecture, and Computer Forensics.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xxii
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

1 Introduction

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Introduction

In December 1984, the Department of Defense (DoD) awarded a contract to Carnegie Mellon
University (CMU) to manage a federally funded research and development center (FFRDC)
called the Software Engineering Institute (SEI). The contract award was based on a competitive
request for proposals (RFP) issued to the university community in May 1984. Seven university or
university/industry consortia offered proposals, and Carnegie Mellon University was the success-
ful proposer, in part because of its strong engineering and computer science programs and the
“engineering mindset” in its research efforts. The SEI is a university-based FFRDC following the
model of Lincoln Labs, which is part of the Massachusetts Institute of Technology. This designa-
tion distinguishes the SEI from the systems engineering FFRDCs, such as MITRE and Aerospace
Corp., which are free-standing, non-profit corporations.

Responsibility for contract management and technical oversight was assigned to the Air Force
Systems Command (AFSC) at Hanscom Air Force Base in Massachusetts. While the contract re-
mained with AFSC, responsibility for technical oversight was moved from AFSC to the Office of
the Under Secretary of Defense for Research and Advanced Technology ((OUSD(R&AT)) in
1987, then to the Defense Advanced Research Projects Agency (DARPA) in 1988, and then to
OUSD for Acquisition and Technology (A&T), now OUSD for Acquisition, Technology, and Lo-
gistics (AT&L), in 1998. These changes brought new perspectives to the oversight and concomi-
tant changes to the strategic imperatives, which are discussed in subsequent paragraphs, along
with the context.

 The DoD Software Environment in 1984 Motivated Formation of the SEI

The proposal to create the SEI originated in 1982 as part of the proposed Software Technology for
Adaptable, Reliable Systems (STARS) program—a DoD software initiative developed by a joint
task force of DoD software professionals with support from industry [DoD 1983, Druffel 1983].
At the time, DoD leaders realized that software technology was becoming the enabler for flexibil-
ity and integration in mission-critical systems, but they also recognized that software was often
the cause of system delays and failures. A task force was chartered to develop an understanding of
the underlying problems and propose a broad research program for DoD software-reliant systems
[DoD 1982].

Although the DoD had traditionally been the leader in the application of computing, that trend re-
versed dramatically in the 1970s for a variety of reasons, including the difficulty the DoD was ex-
periencing in applying evolving technology [Mowery 1996]. The military departments faced ma-
jor challenges in developing software for mission-critical systems because a significant
component involved managing hardware devices (such as sensors and actuators) and control sys-
tems in real time, that is, within the cycle time of the sensor and control mechanisms, often milli-
seconds or microseconds (now nanoseconds). To meet the efficiency needs of these real-time sys-
tems and the need for interfaces to hardware devices, software for DoD systems was developed in
assembly language and/or other low-level languages, some of which were specific to a military
department or program (e.g., Jovial for the Air Force and CMS-2 for the Navy). To a large extent,
programming at these low levels precluded the use of advancing technology and tools. As a result,
the DoD experienced increased development, quality assurance, and sustainment costs, and pro-
tracted schedules. In addition, low-level code was an inhibitor to the greater levels of integration
needed as the DoD began attempting to field larger systems.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

In the late 1970s, research demonstrated that compiler technology could produce optimized object
code that was efficient enough to handle real-time needs and that higher-level languages could in-
clude features to interface with hardware devices. The Deputy Undersecretary of Defense for Re-
search and Advanced Technology ((DUSD (R&AT)) chartered a High Order Language Working
Group consisting of representatives from the military departments and DARPA. The working
group’s charter was to manage the development of a high-level language that would meet the
needs of real-time software developers as well as other system developers and that would support
the development of a robust software development environment (a collection of supporting tools
for developers). DARPA was assigned responsibility for managing the development. This lan-
guage was eventually called Ada [Carlson 1980].

During the five-year development of the Ada language and supporting environment, specialists
with a variety of computer language, compiler, and tools expertise were needed. That expertise
was simply not resident in any quantity within the DoD. Likewise, the existing FFRDCs were
generally focused on specific system capabilities, such as space, electronics, radar, and logistics.
While each had some software expertise, there were too few people with the relevant capability
available. The defense industry and university community were willing to assist, but the mecha-
nisms for rapid access to the needed expertise were cumbersome.

DARPA solved this problem by creating a group of distinguished reviewers who were effective in
bringing the necessary expertise to the effort. DARPA was able to create such a mechanism be-
cause of its broad influence with the computing community at that time. That solution was not
available to the military departments, however, and therefore could not be easily replicated; in any
case, it would not scale. As the joint task force that produced the STARS proposal began its delib-
erations, the same lack of available expertise was evident. A large part of the motivation for pro-
posing the SEI was the need to have an organization of software engineers and software research-
ers familiar with DoD-related problems available to assist the DoD. As such, the SEI was
intended to enable the DoD to gain a long-term benefit from the DoD software initiative by con-
tinuing to transition evolving technology.

Although the STARS program was well received within DoD and by the defense industry, re-
sistance to the idea of a new FFRDC threatened to delay the entire initiative. The DUSD(R&AT),
therefore, pressed forward with the STARS program and chartered a blue ribbon panel to further
evaluate the proposed Software Engineering Institute. The panel, which was composed of senior
industry and university leaders with support from senior DoD people, returned with a strong rec-
ommendation that the DoD establish the SEI [Eastman 1983].

Although the Ada program and the STARS program provided context for initiating the creation of
the SEI, the SEI was independent of both programs. Over time, the SEI provided technical sup-
port to both efforts, but its operation and direction were clearly separate.

 SEI Charter—Improve the State of the Practice of Software Engineering

The blue ribbon panel affirmed the joint task force recommendation that the SEI mission have
four components: technology transition, research, direct support, and education, with the principal
focus on technology transition. The mission statement clearly said, “...The Institute shall acceler-
ate the reduction to practice of modern software engineering techniques and methods and shall

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

promulgate use of modern techniques and methods throughout the mission-critical systems com-
munity.” (Subsequent sponsoring agreements shortened the mission statement to “provide leader-
ship in advancing the state of practice of software engineering in support of DoD systems.”)

Both the blue ribbon panel and the joint task force recognized that while technology develop-
ments from the research community offered promise, those developments needed refinement to
make them applicable for practicing engineers, who in turn would need training and further tools
support. They also recognized that DoD program managers and their defense industry counter-
parts were reluctant to adopt a new technology until the supporting infrastructure was in place.
That infrastructure included not just training but also support tools offered by commercial compa-
nies that would maintain the tools and be available to provide support when needed. The joint task
force proposal was for 60 percent of SEI line5 work to involve technology transition, and noted
that this component of the SEI charter was the raison d’etre. When the Deputy Secretary of De-
fense—who was the source selection authority for the acquisition—received the final briefing
from the selection team, the technology transition component of the mission was the deciding fac-
tor for him.6

The proposal also recognized that to stay abreast of technology, the SEI must be an active partici-
pant in the research community. It is not possible to stay abreast of advances in technology and
engineering simply by reading the literature. Active participants have their ideas shaped by col-
leagues. They publish peer-reviewed papers in top conferences and journals, are invited to confer-
ences during which new ideas are tested, are invited to be on program committees where papers
are reviewed, and become reviewers for publications where they have the opportunity to see new
ideas long before they are published. For these reasons, the proposal was for the SEI to spend 10
percent of its line effort in research.

Likewise, the task force recognized, and the panel affirmed, that an important issue for the DoD
and the defense industry was the availability of properly educated software engineers. They rec-
ognized that software engineering requires a different set of knowledge and skills than conven-
tional computer science or electrical engineering, the traditional sources of software developers.
They proposed that the SEI allocate 10 percent of its line effort to defining and promoting soft-
ware engineering education.

Finally, the task force recognized that the SEI must have a deep understanding of DoD software
issues. This understanding can only be maintained by direct participation in defense systems soft-
ware development, without competing with defense industry. The proposal was for the SEI to al-
locate 20 percent of its line effort to direct support.

While the charter clearly stated that the SEI was expected to improve the practice of software en-
gineering on behalf of the mission-critical community, the task force and blue ribbon panel were
both clear that unless the SEI accepted the challenge of helping improve the state of the practice
in the broader defense and supporting commercial industries, the SEI would not be truly success-
ful. Conversely, while success depended on the SEI’s ability to influence the broader software

5 The terms line or core have been used to refer to work funded by the Congressional line item es-

tablished by the DoD to provide the base funding for the SEI.

6 Private recollection, Bob Kent, Source Selection Board chairman and first SEI program manager.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

community, to do so without benefit to the DoD would clearly be neither appropriate nor suffi-
cient.

 Software Engineering Context into Which SEI was Formed and Evolved

At the time, even the notion that software development could be called an engineering discipline
was debated. There were, after all, few analytic techniques available to a “software engineer;” and
there was no set of accepted practices to guide managers, developers, and maintainers of software.
There was no widely accepted curriculum for preparing a student for such activities. Few univer-
sities offered such a program (most universities did not even offer software engineering courses),
and few faculty were prepared to teach the subject. Moreover, there was no accepted body of
practice for professionals. Indeed, although the term “software engineering” was coined at a con-
ference in 1968 [Naur 1968], the term was notional and still not yet well defined in 1983.

In the DoD, software development and maintenance was an acknowledged source of failure [DoD
1982]. The department was about to adopt the Ada language for all new developments; but few
were familiar with the software engineering concepts that the language enabled, and even fewer
were prepared to adopt the new programming paradigm.

An example of the prevalent misconceptions was the assumption that the systems architecture and
hardware architecture should be defined before any thought was given to the software. The DoD
acquisition and review processes even dictated this approach, based on the assumption that sys-
tems engineering could be separated from software engineering and that system capabilities could
be defined with no regard to how they might be implemented in software. This assumption held
that since software is changeable, software developers could respond appropriately and subse-
quent changes to the hardware could be accommodated.

This hardware-centric acquisition process assumed that software could be completely defined be-
fore any implementation began. It also generally ignored the impact on the software structure of
later changes to requirements or hardware characteristics. (The notion of software architecture had
not yet surfaced, at least not in the DoD). A consequence, for instance, is that systems would often
be fielded with computer hardware that was one or two generations old, real-time systems would
deadlock due to timing conflicts, software development would be behind schedule and over
budget delaying release of the system, and systems maintenance often led to disastrous results
[DoD 1982]. One reaction to these problems yielded the tendency to build custom hardware,
which often exacerbated the software problems.

 The SEI Began by Interpreting the Charter and Developing a Technical
Strategy

With this context, CMU began the journey that has taken the SEI into technology that was unde-
fined in 1984 and into arenas that were not—and probably could not have been—predicted. With
a small staff recruited from the CMU Computer Science department, the SEI took up temporary
residence in an old factory while a new building was constructed. Experts were, thus, recruited to
an entity that was unknown, before a new administrative infrastructure was created and, most im-
portantly, a technical strategy envisioned [Barbacci 1985].

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Interpreting the Charter

In creating a technical strategy, the SEI engaged in some definitional activity that is important to
understand in evaluating the technical contributions in this report. Since the term software engi-
neering was prominent in the charter, was part of the SEI name, and was to be chiseled in granite
on the front of the building, it seemed prudent to define the term. The SEI adapted a definition of
engineering, “the application of science and mathematics to produce products...” to derive the def-
inition of software engineering, “the application of science, mathematics, computing, and the ap-
plication domain to produce software products.”

Since technology transition was a significant portion of the charter, time was spent in understand-
ing what that entails. The SEI adopted the view that transition implies
• making the technology practical

• providing the education and training materials from which practicing engineers can be pre-
pared to apply the technology

• demonstrating that the technology works in a particular application domain

• making practicing engineers aware of the technology
• ensuring that the infrastructure was established to sustain its use and to continue development

The latter requires that commercial companies develop products to support technology and mem-
bers of the software community continue its development, thereby enabling the SEI to move on to
other work. The SEI understood that just as it requires an order of magnitude more effort and cost
to turn a prototype into a product as it did to create the prototype, so the time and effort to transi-
tion technology broadly and successfully is substantially greater than the effort to create the tech-
nology in the first place [Redwine 1985].

The research component of SEI work also needed careful consideration. The research paradigm
in the sciences was well understood, but research in software engineering was not as well defined.
There were no software engineering PhD programs to use as reference. Indeed, there were few, if
any, researchers with computer science PhDs whose dissertations focused on software engineer-
ing.

Engineering research is not the same as research in the sciences. Whereas scientific research seeks
to prove some scientific principle about the physical world through experimentation and observa-
tion, the focus of research in the engineering disciplines is often on finding solutions to difficult
problems that can be generalized. Established engineering disciplines, such as electrical, mechani-
cal, and particularly chemical, provided a useful model, which often involved creating a new engi-
neering process, developing a new design method, or proposing mechanisms for increasing effi-
ciency of some process. The SEI concluded that each of these activities was appropriate to
software engineering. In addition, the SEI concluded that additional research activities more rele-
vant to software were appropriate, including demonstrating that some new approach would scale
and building a prototype that would demonstrate a new approach could work in a particular do-
main. Such research requires real problems and access to those who encounter those problems. As
such, it is not an activity that is easily pursued by an individual or small team because the problem
set usually involves large and complex software systems with interfaces that are not tidy and uni-
form. That is one reason why software engineering research is difficult in a purely academic set-
ting.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Defining the education component of the work was more straightforward, although deciding on
what activities would best support the mission was a bit harder. It became clear that these activi-
ties can easily intersect with technology transition and direct support.

In one sense, defining the direct support component of the charter was straightforward because
there were models from the system engineering FFRDCs. It was trickier to select specific work
for the SEI, however, because it needed to meet at least the following three constraints:
1. not compete with the work of other FFRDCs or with industry

2. further the SEI goals of developing an understanding of DoD needs while supporting the tran-
sition work

3. not simply providing bodies to do what others can do

The balance of work was also complicated by the fact that since 20 percent of the SEI line work
was to be in direct support, some program offices began to see it as an opportunity to get free
help. The Air Force program manager, therefore, began to encourage the SEI to migrate its direct
support work from line funding to funding provided by DoD program offices seeking assistance.
Such work was guided initially by Technical Objectives and Plans Statements (TO&P)—now
called Project Work Statements (PWS)—subject to the original three constraints. Over time, the
demand for PWS work has grown significantly, so the original balance envisioned soon became
impractical. Likewise, the SEI was encouraged by the SEI program manager to assist other U.S.
government agencies under TO&P/PWS funding. Funding from these agencies not only permits
the SEI to apply its technical solutions more broadly, but also enables the SEI to develop capabili-
ties that can be applied to the DoD.

The SEI soon realized that these components of the mission were not as cleanly delineated as their
definitions might imply, and the percentages soon became notional guidelines. As the demand for
TO&P/PWS work increased, the percentage of direct support dominated the mix of work.
Moreover, while all TO&P/PWS work was in direct support of the mission of the sponsoring
organization, not all fit into the original category of direct support. Indeed, some agencies used
TO&P/PWS to sponsor research. The term “direct support” eventually gave way to the more
appropriate “technical support.”

 Evolution of the Effort Composition Was Driven by Experience and
Guidance from the Principal Sponsor

The SEI interpretation and evolution of its charter has, and continues to be, conducted in close co-
ordination with the DoD and defense industry. The DoD, which has played an active role under
the management of the principal sponsor, also seeks input from industry and academia. For in-
stance, in 1994 DARPA initiated a blue ribbon panel review of the SEI operation, before initiating
contract renewal activities, to confirm that the SEI was fulfilling the intended mission and was
continuing to evolve to meet DoD needs. The resulting panel report praised the SEI contributions
to DoD, endorsed renewal of the contract, and reiterated the need for technology transition [DoD
1994].This comprehensive review process has been continued every five years as part of the con-
tract renewal process.

Following the model of MIT Lincoln Laboratory, oversight of the SEI has been provided by a
Joint Advisory Committee (JAC) consisting of senior executives from the Office of the Secretary

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

of Defense and flag officers from the military departments. This oversight body reviews and ap-
proves the strategy and the annual program plan. The JAC is supported by an executive group
(JAC/EG), composed of executives representing the JAC organizations. The JAC/EG provides a
more in-depth evaluation of the strategic plans and annual work plan, and recommends the appro-
priate actions to the JAC. While operational management is the responsibility of the SEI director,
the sponsoring organization assigns a program manager to ensure that the JAC and JAC/EG guid-
ance is carried out within the provisions of the contract. The original Air Force program manager
formed a Technical Advisory Group (TAG) composed of government and academic experts to ad-
vise them on technical matters. The TAG has been continued to the present and has become part
of the oversight function.

The principal responsibility of the program manager has traditionally involved two primary func-
tions: (1) guiding the SEI’s selection of effort to be conducted under line funding, and (2) over-
seeing efforts conducted under separately funded project work statements (PWS) to ensure that
these efforts are consistent with the needs of the DoD and associated U.S. government agencies.

Just as the SEI understanding of its mission has changed and the technology upon which it bases
its work has changed, so have the needs of the DoD changed. Furthermore, as responsibility for
the sponsoring agent has been shifted from the Air Force to OSD to DARPA and back to OSD,
the individual perspectives of those who filled the (program manager/executive agent) position
has changed. In 2010, the SEI was directed to concentrate line funding primarily on research and
some workforce development, leaving technical support for PWS funding.

Consequently, in 2010, the DoD sponsoring agreement modified the mission statement to provide
greater emphasis on research,

…to provide technical leadership and innovation through research and development to ad-
vance the practice of software engineering and technology in support of DoD needs.

The SEI’s core statement [SEI 2010] specified three areas in which the SEI has traditionally pro-
vided value, although the new guidance shifts the emphasis for line-funded work to R&D. The
three areas were

(1) Research and Development

• research projects that make significant improvements to software engineering and related dis-
ciplines

• collaborations that leverage work found in industrial research, academia, and government la-
boratories

• maintaining cognizance of the global software state of the art/state of the practice in software
engineering and related disciplines to identify potential advancements, trends, issues, and new
strategic directions for DoD systems

(2) Technical Support

• the delivery of technical support addressing specified software engineering problems that im-
pede the government’s ability to develop, acquire, deploy, evolve, and sustain high-quality
software-reliant systems at a predictable performance, cost, and schedule

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

(3) Workforce Development

• the development of materials that improve the competence of the software engineering work-
force.7 Work in this area includes the development of education and training materials as well
as bringing improved practices to the attention of practitioners and managers through work-
shops, books, webinars, and other effective delivery mechanisms. This activity is performed
in conjunction with DoD, government, academic, and industry organizations.

Responding to this new guidance, the SEI balance of activities can be visualized by the following
graphic.

Figure 1: Balance of SEI Activities

Experience has demonstrated that technology transition is not a separable activity. Rather it is
viewed as a continuum as illustrated in Figure 2.

Figure 2: Technology Transition Continuum

The SEI establishes a pipeline of activities in different stages of maturity covering the first four
elements of that continuum—Explore, Create, Apply, and Amplify.
• Explore: Research projects in this phase are line funded. They investigate new areas of re-

search—areas that are outside the scope of current research plans. Projects in this phase may
also build a technical and business case for a more substantial effort to further explore a
promising new technical idea.

• Create: Research in this phase is aimed at demonstrating the feasibility and potential utility
of new ways to enhance software-enabled capabilities. Work in this phase is primarily line
funded, although sometimes PWS and Collaborative Research and Development Agreement

7 Research results have no benefit for the DoD unless they help improve the ability of practitioners

and managers to avoid or solve software-related problems.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

(CRADA) funding is available to explore the potential applicability of the research to prob-
lems of software-reliant systems.

• Apply: Work in this phase is devoted to applying research results to a variety of systems to
validate the results in representative contexts as well as to demonstrate their effectiveness, ap-
plicability, and adoptability. Research results are refined and extended in this phase. Work is
primarily funded via PWS or CRADA, although some line funding may be used to refine and
extend the results based on experience gained in applying the results. In addition, line funding
may be used to gather data on costs and benefits to help researchers validate and improve
their work.

• Amplify: Work in this phase is focused on widespread transition of a research result whose
value has been proven in the Apply phase. Activities include organizing workshops and con-
ferences for those interested in applying the result, licensing others to teach practical applica-
tions of the result, publishing books, and transitioning further development to other parties.
The goal is to foster the development of a self-sustaining infrastructure within which the inno-
vation can flourish without SEI participation.

As described above, line funding is used primarily to support research in the Explore and Create
stages, although PWS funding is sometimes available for this kind of research. The later stages
are primarily funded with PWS or CRADA funding from organizations seeking to apply new ap-
proaches to their software challenges.

 The SEI Proposes Work Based on an Evolving Technical Strategy

The SEI recognized from the beginning that its work must be driven by a clearly articulated tech-
nical strategy. The technical strategy was not, and never has been, formulated solely within the
SEI. With the help of defense industry, DoD, and university advisors/partners, the SEI developed
a technical strategy to deal not only with the context of the time, but to position the SEI to help
the DoD meet future software challenges. Over the years, the SEI technical strategy has evolved
with changes in technology and changes in the challenges facing the DoD.

For example, the challenges in the areas of education and training, management, and real-time
embedded systems were known early on. In contrast, while the challenges to internet security
were predictable, no serious incident had yet been experienced to validate the need for internet se-
curity. Other challenges and technology opportunities were not yet understood, or even predicted.
From the beginning, the SEI has worked to ensure that its technical strategy evolves to address
new challenges and opportunities with the goal of preparing the technology before the DoD expe-
riences the need.

The technical component of the strategy is necessarily based on the state of practice at the time
and the technical trends that offer opportunities for improvement. The SEI is a relatively small or-
ganization for the breadth of its mission, so an equally important question driving the strategy is
how to produce the necessary impact. Thus, an important consideration in formulating the strategy
is to identify the points of leverage that will allow the SEI to have impact beyond its size con-
straints. The SEI strategy evolves based not just on technology but on what the SEI is learning
about how to bring about the greatest impact.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Each year, the SEI proposes a work plan based on its rolling five-year technical strategy. Ideas for
work projects may come from within the SEI, from practicing engineers in the defense industry,
from colleagues in the research community, or from government employees. Ideas often arise
while SEI staff are engaged in direct support to specific programs. When the SEI perceives that
the problems experienced by a program are representative of a class of problems, or predictive of
a class of future problems, the SEI experts seek not only to help the specific program but also to
develop solutions that can be broadened and replicated.

Regardless of the source, the SEI measures all new ideas against its vision and evolving strategy
and proposes work only when it has the appropriate expertise to carry out the work. The SEI con-
sistently and constantly recruits leaders in new and focused technical areas to ensure that its re-
sults will be the best the technology will support. The SEI also recognizes that software engineer-
ing requires both expertise in software-related technologies and familiarity with the relevant
applications domain. While the SEI staff naturally reflects experience with a broad range of appli-
cations, the SEI has consciously chosen not to focus on specific application domains, such as avi-
onics, fire control, or command and control, which would increase the size of SEI staff unneces-
sarily. Rather, the SEI partners with relevant defense industry and government organizations who
have a deep understanding of specific applications.

The SEI’s focus on strategy-driven work selection continues. One reason for the consistent impact
on the community is that the SEI has articulated a consistent vision that brings credibility over
time. The section titled “The Future of Software Engineering” lays out the SEI strategy based on
technology trends and defense needs in the foreseeable future. This strategy will guide future
work selection.

 Mechanisms for Engaging the Community

The goal of preparing technology before the DoD experiences the need requires the SEI to de-
velop a deep understanding of DoD systems, culture, acquisition processes, and capabilities. The
SEI recognized that such understanding could only be acquired by working on real problems and
real systems, but the challenge was to do so without competing with the defense industry. The
SEI, therefore, embarked on a partnership approach with industry and DoD program offices. DoD
programs sponsored SEI staff to assist prime contractors in applying evolving technology to sys-
tems under development.

A second mechanism the SEI has employed to ensure that its work is relevant to the DoD is the
resident affiliate program. Software professionals from industry and the DoD are invited to spend
up to 18 months at the SEI to work on specific projects. The benefit to the resident affiliate is that
he or she participates in the development of the technology and takes that knowledge to his or her
home organization. The resident affiliate also helps the SEI project remain grounded on real prob-
lems, often even bringing such problems to the project. As of August 2014, 292 government and
industry resident affiliates have lent their expertise to the SEI.

The SEI adopted a similar mechanism to access specialized research talent for its efforts by em-
ploying visiting scientists on either a full-time or part-time basis. These visiting scientists brought
an understanding of evolving technology to complement the SEI internal research activities.
About 306 visiting scientists have engaged in SEI work as of August 2014.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Another effective mechanism has been the use of structured workshops. SEI staff often invite
leading members of the software engineering community to attend workshops in which evolving
technology or problem areas are submitted to intense investigation and debate. All participants
benefit from the interaction and are free to take advantage of their newly gained perspective in
their own work, while the SEI uses the combined perspective to shape its work.

The SEI has undergone significant change in its first three decades and expects to undergo further
changes in the future as the technology changes and the needs of the DoD change. Despite these
changes, several characteristics have—and are expected to—remain constant: leadership, innova-
tion, quality, the focus on engineering for software-intensive systems, and impact on its principal
sponsor, the DoD.

Each reader is invited to make his or her own judgment about the relative importance and impact
of the SEI on DoD systems and on the software engineering community.

Much of the early work will appear dated, overcome by later developments, even mundane by to-
day’s standards. Of course, the work must be evaluated in the context of its time. In many cases,
the contributions were leadership contributions, many now transitioned to the state of the practice.
Thus, while the SEI may not have been the first into an area, it often entered an area that was
new—in many cases, an area in which the terms were undefined. The SEI sees its responsibility to
collaborate with the software engineering community to help bring some order and direction to
the area and to the field. Through these efforts, the SEI has earned a reputation of leadership that
encourages collaboration and invites participation by the best software engineers of the day.

 References

[Barbacci 1985] Barbacci, M. R.; Habermann, A. N.; & Shaw, M. “The Software Engineering In-
stitute: Bridging Practice and Potential.” IEEE Software 2, 6 (November 1985): 4-21 (ISSN:
0740-7459).

[Carlson 1980] Carlson, M; Druffel, L.; Fisher, D.; & Whitaker, W. “Introducing Ada,” 263-271.
ACM ’80: Proceedings of the ACM 1980 Annual Conference. Nashville, TN, October 1980.
ACM, 1980.

[DoD 1982] Department of Defense. Report of the DoD Joint Task Force on Software Problems
(Stock No. ADA123449). National Technical Information Service, 1982.
www.dtic.mil/docs/citations/ADA123449

[DoD 1983] Department of Defense. Software Technology for Adaptable Reliable Systems
(STARS) Program Strategy (Stock No. ADA128981). National Technical Information Service,
1983. www.dtic.mil/dtic/tr/fulltext/u2/a128918.pdf

[DoD 1994] Department of Defense. Blue Ribbon Comprehensive Review of the Software Engineer-
ing Institute, Prepared for the Advanced Research Projects Agency. DoD, 1994. Not publicly avail-
able.

[DoD 2010] Department of Defense. “Annex A: CMU’s SEI FFRDC Core Statement.” DoD
Sponsoring Agreement for the SEI. DoD, 2010. Not publicly available.

https://collaboration.sei.cmu.edu/sites/SEIhistory/References%20Full%20Text/%5BEastman%201983%5D%20Study%20Report%20on%20the%20DoD%20Software%20Engineering%20Instit
https://collaboration.sei.cmu.edu/sites/SEIhistory/References%20Full%20Text/%5bSEI%202010%5d.pd
http://www.dtic.mil/docs/citations/ADA123449
http://www.dtic.mil/dtic/tr/fulltext/u2/a128918.pdf

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[Druffel 1983] Druffel, Larry E.; Redwine, Samuel T. Jr.; & Riddle, William E. “The STARS
Program: Overview and Rationale.” IEEE Computer 16, 11 (November 1983): 21-29.

[Eastman 1983] Eastman, Neil S. Study Report on the DoD Software Engineering Institute. Insti-
tute for Defense Analysis, 1983.

[Mowery 1996] Mowery, D. C. & Langlois, R. N. “Spinning Off and Spinning On.” Research
Policy 25 (1996): 947-966.

[Naur 1969] Naur P. & Randell, B., eds. Software Engineering: Report of a Conference Spon-
sored by the NATO Science Committee. Garmisch, Germany, October 7-11, 1968. Scientific Af-
fairs Division, NATO, 1969.

[Redwine 1985] Redwine, S. T. & Riddle, W. E. “Software Technology Maturation,” 182-188.
Proceedings of the 8th International Conference on Software Engineering. IEEE Computer Soci-
ety Press, 1985.

https://collaboration.sei.cmu.edu/sites/SEIhistory/References%20Full%20Text/%5BEastman%201983%5D%20Study%20Report%20on%20the%20DoD%20Software%20Engineering%20Institute.pdf
https://collaboration.sei.cmu.edu/sites/SEIhistory/References%20Full%20Text/%5BMowery%201996%5D%20D.C.Mowery,%20R.N.%20Langlois,%20%E2%80%9CSpinning%20off%20and%20spinning%20on.pdf

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

2 Real-Time Embedded
Systems Engineering

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 3: Real-Time Embedded Systems Engineering Timeline

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Introduction to Real-Time Embedded and Cyber-Physical
Systems

Most mission-critical defense systems use embedded processors with hard real-time components
in which the software must process inputs from sensors and execute instructions to control de-
vices. Sensor data can arrive synchronously or asynchronously. Each data point is available only
for a short period (nano to micro seconds), and the output must be produced fast enough to pro-
vide timely control. A terrain-following avionics system is an example: it must process the altime-
ter, airspeed, and radar inputs in sufficient time to issue altitude controls to follow the terrain. The
processor may be performing other lower priority tasks, such as monitoring fuel.

Real-time constraints affect almost all Department of Defense (DoD) systems applications, such
as avionics, fire control, vehicle management, missile guidance, radar tracking, and unmanned air
vehicle (UAV) control. Indeed, the requirement to manage real-time constraints is one of the fac-
tors that distinguishes DoD software from many civilian applications. While civilian applications
also exhibit real-time components, the DoD requirements are generally coupled with other factors,
including sheer size of the software, security, weapon system safety, and life dependence, that
make the real-time component critical [NRC 2010]. As the integration of the processor with the
physical system of sensors and controls has become ever tighter, the term cyber-physical has been
adopted to describe these systems.

 The SEI Contributed to Early DoD Ada Adoption Effort for Real-Time
Embedded Systems

Prior to establishing the SEI, the DoD developed a new programming language called Ada. One
of the factors driving development of Ada was the desire to develop real-time software in a higher
level language supported by tools to manage the complexity. When the SEI began operating, the
DoD had mandated the use of Ada for all mission-critical systems, and DoD program managers
had serious concerns regarding early use of the language. Since this was clearly of strategic im-
portance to the DoD and future software-intensive systems, the SEI launched several efforts
aimed at addressing the technical and managerial questions about Ada adoption.

A number of commercial Ada compilers were coming to market. While each was required to pass
validation by the Ada compiler test suite, the supporting tools making up the software develop-
ment environment were largely disparate. This was the source of considerable confusion among
DoD program managers. The SEI set out to assess the maturity of various compilers and support-
ing tools to determine their suitability to support DoD programs. For a variety of reasons, DoD
programs chose different embedded processors with different instruction set architectures for their
systems. Each of those instruction set architectures required different code generators, so that
while each could use the same validated compiler and each validated code generator would pro-
duce code that correctly executed the Ada instructions, different code generators would have dif-
ferent runtime characteristics.

The SEI established the Ada/Real-Time Embedded Systems Testbed to build the necessary infra-
structure to test the runtime performance of code generators. In addition to having the necessary
hardware to support testing the suitability of these processors for a given application, the SEI
testbed team had the expertise to conduct the testing so that DoD programs did not need to un-
dergo the expense of duplicating that capability. DoD programs that did not choose Ada as their

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-AEST-REST%20130924.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

development language nevertheless needed to test the suitability of their chosen processors and
the runtime performance of their chosen compiler. The SEI responded to this need by expanding
the Ada Embedded Systems Testbed to the more general case [Weiderman 1989a]. Benchmarks,
such as the Hartstone benchmark, were developed that enabled assessment of the performance of
a runtime system.

Another source of confusion for DoD program managers concerning the use of Ada for real-time
systems were two prevalent notions, motivated in part by historical experience with the use of
other high-level languages for real-time systems: (1) the notion that the Ada language needed to
be modified to achieve needed real-time solutions, and (2) the practice of extensively modifying
the Ada compiler and/or vendor-supplied runtime system. The Distributed Ada Real-time Kernel
(DARK) effort was initiated to address two distinct needs of real-time applications: distribution
and hard real-time scheduling mechanisms. DARK was a prototype kernel that demonstrated the
functionality needed to effectively support the execution of distributed, real-time Ada applications
in an embedded computer environment by returning control to the user [Bamberger 1988]. This
effort was led by a newly hired SEI staff member who was formerly a member of the Ada Lan-
guage Design Team and a Distinguished Reviewer, again providing credibility to early SEI work.
The resulting prototype was offered to compiler vendors and used by at least one.

These early efforts helped those programs that selected Ada as the development language. But,
despite the mandate, that decision was not always an easy one for DoD program managers. A pro-
gram manager faced many considerations in making the language decision, some driven by myth,
some by technology maturity, and some by simple bias. The Air Force program manager for the
SEI asked the SEI to develop a factual guide for program managers. Relying on the work of other
Ada-related projects at the SEI and the substantial expertise the SEI had accumulated in Ada and
real-time systems development, the SEI produced the Ada Adoption Handbook: A Program Man-
ager’s Guide [Foreman 1987]. The handbook was an objective guide for DoD program managers
that addressed many of the myths surrounding the use and practicality of using Ada on defense
systems. Its thoroughness and objectivity helped establish the SEI as a source of unbiased guid-
ance on software technology. It was so well received and heavily used in the DoD that the
JAC/EG requested an updated version to capture changes in the supporting technology. The up-
dated version was published in 1992 [Hefley 1992].

Adoption of Ada was not as widespread as was originally expected, and the language has since
been overtaken by other languages for many applications. To some, this represents failure. That
view misses the important point that Ada was a significant step in defining advanced program-
ming languages with capabilities that support the process of software engineering and aid in sys-
tem reliability, particularly for real-time systems. Ada afforded engineers an opportunity to de-
velop software for real-time embedded systems in a high-level language, including within the
language a capability to specify concurrent execution that was formerly available only by making
reference to an operating system call. Because the language was well defined and compilers certi-
fied as being compliant with the definition, software engineers could develop the software on host
machines with powerful software development environments and reliably port the software to a
variety of target machines. In essence, Ada helped to perfect the viability of safety critical real-
time systems. Several DoD and NASA programs realized these benefits in developing reliable
real-time systems. Although some of the people who joined the SEI had been deeply involved in
the development of the language and supporting infrastructure, the SEI was not directly involved

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/3-DARK%20130924.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/4-Ada%20Adoption%20Handbook%20130924.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/4-Ada%20Adoption%20Handbook%20130924.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

in those developments. The SEI was, however, instrumental in making many of the early adopters
successful and in providing balanced, unbiased guidance to those faced with the language deci-
sion.

 The SEI Provided an Engineering Basis for Real-Time Systems
Development

A major factor in developing real-time software for any language, including assembly language,
was the development of the real-time scheduler. There simply was no analytic technique available
to ensure that all deadlines could be met. Consequently, practicing engineers relied on experience
and gross calculations. When two professors at Carnegie Mellon University (CMU) proved that
constraints of an obscure scheduling theory could be relaxed, they approached the SEI for help in
making that new theoretic result practical for software. The SEI responded by launching the rate
monotonic analysis (RMA) effort. One of the faculty joined the SEI full time and was joined by
experienced engineers in the SEI who had Ada and real-time experience. Together they applied
the theory, helped develop further modifications, and demonstrated that a previously poorly un-
derstood concept of priority inversion could be analytically predicted and prevented. Rate mono-
tonic analysis was quickly transitioned to enable defense industry software engineers to build real-
time schedulers that avoid priority inversion and meet all required schedule constraints [Sha
1984]. RMA was applied in the Navy’s BSY-1 (Submarine Special Surveillance and Control)
Trainer, and the Air Force’s F-22. RMA has become state of the practice in developing real-time
systems. RMA influenced several standards, including Futurebus, POSIX, real-time CORBA, the
Ada language, and the Navy Next Generation Computer Resources (NGCR), and is credited with
helping NASA restart the Mars Pathfinder in 1998 after a system shutdown. The transition was so
successful that it became the model for effective technology transition at the SEI [Fowler 1993,
1995].

Another complication for DoD real-time embedded systems is that they often have a safety-criti-
cal component that must interact with other components. For example, the flight control compo-
nent in an autopilot is certified to DO178B Level A (the highest level); however, it needs to ac-
cept guidance commands from a flight guidance system that is only certified to Level C.
Nevertheless, avionics certification requires that Level A software must still function correctly in
spite of the software failures in less critical components [DO-178B 1992, RTCA 1992]. The SEI
developed an architecture template, called the Simplex architecture, that supports overall safety
when a system is composed of both reliable/safe components and less reliable/less safe compo-
nents [Sha 2001]. This architecture divides a system into two parts: a complex component that
cannot be fully verified but is needed to provide important services, and a high-assurance control
subsystem that is simple and fully verified. It is designed so that (a) complex components cannot
corrupt or interfere with the execution of the high-assurance system, and (b) the data and/or com-
mands from the complex component will not be used unless the resulting system state can be
checked in real time that it remains well within the safety and stability envelope. Otherwise, the
safety controllers put the system into safety mode. The Simplex architecture also ensures predicta-
ble and guaranteed timing behaviors in spite of failures of complex components and provides the
ability to restart or replace complex components during operation. Simplex architecture also ena-
bles switching the control to alternative components safely. The prototype software was used to
demonstrate the concept on an F-16 advanced maneuvering control study using Lockheed Mar-

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/5-Rate%20Monotonic%20Analysis%20130924.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/5-Rate%20Monotonic%20Analysis%20130924.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/6-Simplex%20Architecure%20130924.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

tin’s simulator. Although this prototype software was used for demonstration purposes only, ap-
plication of the Simplex architecture principles were successfully applied on such systems as the
F-22 and F-35.

 SEI Research Included Software for Parallel Hardware Architectures

Software has traditionally been written in languages that presume a single processor. Although
software has been successfully written for parallel machines, the mindset is a radical departure
from the single-processor model. Early parallel machines focused largely on applications for
which with applications had natural parallelism that could be exploited, such as matrix manipula-
tion and image processing. However, hardware vendors and chip manufacturers recognized that to
continue to benefit from the “Moore’s Law” curve, they would eventually need to develop gen-
eral-purpose processors with a high degree of parallelism. The SEI initiated efforts that would en-
able software engineers to exploit the capabilities of those processors.

Recognizing this future need to support applications running on networks of special-purpose pro-
cessors executing concurrent tasks, the SEI initiated research in software for heterogeneous ma-
chines. This work continued from 1985 through 1992. The heterogeneous machines targeted by
this research consisted of general-purpose processors, special-purpose processors, memory boxes,
and switches that could be configured in arbitrary logical networks. The application tasks were
independent, large-grained, concurrent programs written in various programming languages com-
municating via message-passing protocols. Heterogeneous machines, such as the one assumed in
this research, pushed the leading edge of software engineering [Barbacci 1988]. By 1991, the re-
search focused on improving the practice of developing and maintaining distributed systems. The
SEI developed a language and methodology (Durra)) for implementing distributed, real-time ap-
plications on heterogeneous computer systems. The SEI also developed a runtime environment to
support distributed applications that use heterogeneous machines.

By 2009, the trend to exploit the advantages of parallelism led to the development of multicore
chips, that is, a chip-level multiprocessor (CMP). While these chips offer a significant processing
advantage that might be exploited by real-time systems requiring autonomy, such as UAVs, prob-
lems occur when threads distributed across multiple processors must synchronize with each other,
leading to idle processors and poor utilization. Essentially, there are two aspects that must be con-
sidered: (1) allocating and mapping a thread to a processor, and (2) determining the execution or-
der on that processor (i.e., scheduling). A research team composed of SEI staff and CMU profes-
sors with extensive experience in scheduling and in practical real-time systems has been
addressing multicore scheduling [Andersson 2012a]. It is critical to develop solutions to these
problems because the current approach is either to avoid the use of multicore or to turn off all pro-
cessors except one to use the old sequential solutions. Neither alternatives enables DoD systems
to realize the advantages offered by multicore chips.

 The SEI Developed Analytic Techniques and Supporting Tools for
Engineering Real-Time Systems

Modern embedded systems still involve real-time constraints, but as processing capabilities im-
prove, embedded systems are less processor limited in achieving their real-time objectives, even
though they are often challenged by added requirements that eat up those spare cycles. In many
applications, the result has been a move away from traditional methods toward the use of more

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/7-Durra%20130925.doc
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/7-Durra%20130925.doc
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/8-Multicore%20130924.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

general-purpose techniques but with special care to ensure that real-time constraints are satisfied.
For applications such as control systems and autonomous (air, land, or undersea) vehicles, as well
as many civilian applications (including medical devices and automobiles), real-time constraints,
while still important, are less a primary concern and are, in practice, treated more like other qual-
ity attributes. The SEI pursued several efforts that provide engineering analysis to support treating
the real-time component as a quality-of-service (QoS) attribute.

Recognizing this trend, the SEI developed a suite of performance reasoning frameworks founded
on the principles of generalized rate monotonic analysis (GRMA) for predicting the average and
worst-case latency of periodic and stochastic tasks in real-time systems (Lambda-*). The Lambda-*
suite can be applied to many different, uniprocessor, real-time systems having a mix of tasks with
hard and soft deadlines with periodic and stochastic event inter-arrivals. Some examples include
embedded control systems (such as avionics, automotive, and robotic) and multimedia systems
(such as audio mixing). Tools were developed to check that a component-based design satisfied
various rules imposed by the reasoning framework. This enables the automatic generation of a
complete implementation of the design that would exhibit the runtime behavior “predicted” by the
reasoning framework, within an explicitly defined confidence interval. The important contribution
is that a user would only be able to design or build systems that exhibit predictable behavior by
construction, analogous to the way modern programming languages ensure that programs exhibit
memory safety by (type system) construction.

The SEI also pursued integrated methods for predictive analytic composition and tradeoff
(IMPACT) as a joint effort with CMU faculty and Lockheed Martin Aeronautics Company (LM-
Aero). The goal was the development of analytic methods to support the correct temporal compo-
sition of systems. The methodology focused on the development of techniques to construct sys-
tems having predictable timing performance and composed of pre-analyzed components. Result-
ing methods included predictable dynamic assembly of software systems from pre-analyzed
“software parts” (PAAC), development of temporal analytic composition theory (TACT), predic-
tive models to utilize software and system-level performance measures, and engineering tradeoff
analyses involving both runtime attributes and design-time attributes [Saewong 2002].

These methods offered several benefits that support engineering tradeoff analyses at design time
and at runtime, including design uniformity using architectural patterns, reduction in rework
through system-level analysis conducted at design time, and the ability to address more complex
systems by leveraging pre-analysis of architectural patterns. These methods were used on the F-22
embedded avionics simulation to show that all temporal design characteristics expressed in the F-
22 challenge problem could be readily modeled and analyzed using a combination of real-time
queuing theory (RTQT) and generalized rate monotonic analysis techniques. Furthermore, it al-
lowed LM-Aero and CMU to propose a large-scale DASADA II experiment centered on upgrad-
ing the F-22 mission computer. Results and insights from this experiment aimed to reduce both
new development and application rehost costs. The team was invited by the U.S. Army Aviation
and Missile Command (AMCOM) to propose a large-scale experiment centered on application of
technologies to the Sikorsky Black Hawk helicopter.

In the early 1990s, as recognition of the importance of software architecture grew, the SEI sought
ways to apply these emerging principles to real-time systems. A DARPA-funded effort that fos-
tered the creation of architecture description languages (ADLs) produced a design at Honeywell

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/9-IMPACT%20130924.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Technology Center, called MetaH, specifically focused on embedded software and supporting
RMA [Vestal 1993]. After its successful use on a missile guidance system for the Army, the Avi-
onics Systems Division of SAE International embarked on the development of an international
standard. Recognizing its mission to accelerate transition of technology to practice, the SEI agreed
to assume leadership in this effort and the evolution of supporting technology. With support of the
community, the SEI led acceptance of the SAE Avionics Architecture Description Language
(AADL) standard in 2004, with revisions in 2009. The SAE AADL was specifically designed to
support modeling and analysis of large-scale embedded software system architectures in terms of
an application runtime architecture bound to a computer platform architecture and interacting with
a physical system in which it is embedded. The architecture is expressed through concepts with
well-defined semantics, such as periodic and aperiodic tasks with sampled and queued communi-
cation operating as partitioned system on synchronous or asynchronous networked computer hard-
ware. Standardized extensions to AADL address embedded architecture standards such as
ARINC653, analysis of nonfunctional properties such as safety and reliability, as well as architec-
ture-focused requirements capture, validation, and verification. With the release of the standard,
the SEI provided an Eclipse-based open source implementation of a tool environment for AADL
called OSATE (Open Source AADL Tool Environment) to encourage pilot projects. The SEI con-
tinues to be involved in the SAE AADL committee and to work with the aerospace industry, as
well as other industry sectors, to foster use of this model-based architecture-centric practice into
military systems.

The SEI also developed an agent-based programming language (Easel). This language allowed
independent specification of the time characteristics of each system constituent and interactions
among the constituents, but without explicit user-level management of the timing interactions. Ea-
sel was used for a variety of embedded systems applications, including cooperative UAV control
applications.

 SEI Contributions to Standards

An important factor in the transition of technology to general practice is the existence of a na-
tional or international standard. System developers of DoD systems rely heavily on standards to
ensure that the infrastructure is present to support use of a particular technology. The SEI has ac-
tively influenced real-time standards to provide confidence on the part of defense systems devel-
opers in evolving technology. For instance, generalized rate monotonic analysis influenced sev-
eral standards, including Futurebus, IEEE POSIX, real-time CORBA, the Ada language, and the
Navy Next Generation Computer Resources (NGCR). Another example is the IEEE 1003 stand-
ard (POSIX). The SEI led the development of the SAE Avionics Architecture Description Lan-
guage. The SEI also initiated and provided leadership to the IEEE 1003.21 standard, Real-Time
Distributed System Communication. The standard includes operations for initialization, asynchro-
nous operations, event management, buffer management, endpoint management, directory ser-
vices, destination-based message transfer, broadcast, multicast services, labeled messages, and
connection management and termination. The standard is defined as a language-independent
standard (LIS). That is, a full semantics of the application interface has been defined independent
of a particular programming language, allowing the LIS to be bound to multiple programming
languages. The standard also includes an extensive formal specification that was completed in
2002.

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/10-SAEAADL%20130924.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Summary

DoD systems have traditionally been challenged by the real-time needs of embedded systems. Of-
ten, the requirements constrained the software architecture and challenged the developers’ innova-
tion. From its inception, the SEI has not only addressed the then-current needs of the DoD, but
has anticipated its future needs. Through a combination of research into new theory, evolution of
analytic techniques and supporting tools, application to real systems, and influence on standards,
the SEI has provided the leadership that has enabled defense systems to realize the benefits of in-
tegrating systems of embedded processors with hard real-time constraints. In the process, the SEI
efforts have matured the practice of software engineering so that one can reason about the behav-
ior of a system and its properties.

 References

[Andersson 2012a] Andersson, Bjorn; Chaki, Sagar; de Niz, Dionisio; Daugherty, Brian; Kegley,
Russell; & White, Jules. “Non-Preemptive Scheduling with History-Dependent Execution Time,”
363-372. Proceedings of the 24th Euromicro Technical Committee Conference on Real-Time Sys-
tems (ECRTS). Pisa, Italy, July 11-13, 2012. IEEE, 2012. http://www.computer.org/csdl/proceed-
ings/ecrts/2012/4739/00/index.html

[Bamberger 1988] Bamberger, Judith; Coddington, Timothy; Firth, Robert; Klein, Daniel; Stinch-
comb, David; Van Scoy, Roger; & Colket, Currie. Distributed Ada Real-Time Kernel (CMU/SEI-
88-TR-017). Software Engineering Institute, Carnegie Mellon University, 1987. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?assetID=10661

[Barbacci 1988] Barbacci, M. R.; Weinstock, C. B.; & Wing, J. M. “Programming at the Proces-
sor-Memory-Switch Level,” 19-28. Proceedings of the 10th International Conference on Software
Engineering (ICSE). Singapore, April 11-15, 1988.

[DO-178B 1992] “Software Considerations in Airborne Systems and Equipment Certification.”
RTCA/DO-178B, December 1, 1992.

[Doubleday 1992] Doubleday, Dennis & Barbacci, Mario. Durra: A Task Description Language
User’s Manual (Version 2) (CMU/SEI-92-TR-036). Software Engineering Institute, Carnegie
Mellon University, 1992. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=11761

[Foreman 1987] Foreman, John & Goodenough, John. Ada Adoption Handbook: A Program Man-
ager’s Guide (CMU/SEI-87-TR-009). Software Engineering Institute, Carnegie Mellon Univer-
sity, 1987. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10261

[Fowler 1993] Fowler, Priscilla & Levine, Linda. Technology Transition Push: A Case Study of
Rate Monotonic Analysis (Part 1) (CMU/SEI-93-TR-029). Software Engineering Institute, Carne-
gie Mellon University, 1993. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=11993

[Fowler 1995] Fowler, Priscilla & Levine, Linda. Technology Transition Pull: A Case Study of
Rate Monotonic Analysis (Part 2) (CMU/SEI-93-TR-030). Software Engineering Institute, Carne-
gie Mellon University, 1995. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=11999

http://www.computer.org/csdl/proceed-ings/ecrts/2012/4739/00/index.html
http://www.computer.org/csdl/proceed-ings/ecrts/2012/4739/00/index.html
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetID=10661
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetID=10661
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=11761
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10261
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=11993

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[Hefley1992] Hefley, William; Foreman, John; Engle, Jr., Chuck; & Goodenough, John. Ada
Adoption Handbook: A Program Manager’s Guide, Version 2.0 (CMU/SEI-92-TR-029). Soft-
ware Engineering Institute, Carnegie Mellon University, 1992. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?AssetID=11721

[NRC 2010] NRC Committee for Advancing Software-Intensive Systems Producibility. Critical
Code. National Academies Press, 2010 (ISBN-13:978-0-309-15948-7).

[RTCA 1992] RTCA Inc. “Software Considerations in Airborne Systems and Equipment Certifi-
cation.” RTCA/DO-178B, December 1, 1992.

[Saewong 2002] Saewong, S.; Rajkumar, R.; Lehoczky, J. P.; & Klein, M. H. “Analysis of Hierar-
chical Fixed-Priority Scheduling.” Proceedings of Euromicro Conference on Real-Time Systems.
Vienna, Austria, June 19-21, 2002; 19-21. IEEE, 2002. http://www.computer.org/csdl/proceed-
ings/ecrts/2002/1665/00/16650173-abs.html

[Sha 1984] Sha, Lui & Goodenough, John. “Generalized Rate-Monotonic Scheduling Theory: A
Framework for Developing Real-Time Systems.” IEEE Proceedings 82, 1 (January 1984): 68-82.

[Sha 2001] Sha, L. “Using Simplicity to Control Complexity.” IEEE Software (July/August
2001): 20-28. IEEE, 2001.

[Weiderman 1989a] Weiderman, Nelson. Ada Adoption Handbook: Compiler Evaluation and Se-
lection Version 1.0 (CMU/SEI-89-TR-013). Software Engineering Institute, Carnegie Mellon
University, 1989. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10929

[Vestal 1993] Vestal, S. & Binns, P. “Scheduling and Communication in MetaH,” 194-200. Pro-
ceedings of the Real-Time Systems Symposium. (RSTS). Durham, NC, December 1-3, 1993. IEEE,
1993.

http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=11721
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=11721
http://www.computer.org/csdl/proceed-ings/ecrts/2002/1665/00/16650173-abs.html
http://www.computer.org/csdl/proceed-ings/ecrts/2002/1665/00/16650173-abs.html
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10929

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Ada/Real-Time Embedded Systems Testbed

 The Challenge: Evaluating Runtime Performance on Embedded Processors

How real-time systems would be programmed in a high-level language like Ada was just one as-
pect of Ada adoption for the DoD. Two other important aspects concerned (1) the performance of
the code generated by Ada compilers for the various embedded processors used by the DoD and
(2) the efficiency of the services provided by the Ada runtime environment. The runtime environ-
ment provided services such as process management, storage management, and exception han-
dling for supporting the execution of Ada programs. Prior to the adoption of Ada, such services
had been provided either by the application programmer or by a small real-time executive.

There was concern both inside and outside the DoD that about whether Ada could support these
real-time needs efficiently. In particular, the semantics of the tasking model and the processing
overhead associated with task interactions and context switching were viewed as impediments to
the real-time performance demanded of mission-critical software. An SEI report describes the is-
sues and summarizes some of the significant early investigative work of organizations such as the
Ada Runtime Environment Working Group (ARTEWG)—a special interest group established by
the ACM in 1985—and the Evaluation and Validation team of the DoD’s Ada Joint Program Of-
fice [Weiderman 1987a].

 A Solution: A Testbed for Real-Time Performance Evaluation

Any assessment of Ada for mission-critical computing on embedded processors would have to
take into account the quality of both the generated code and the runtime execution environment.
The SEI established the Ada Embedded Systems Testbed (AEST) in 1986 to investigate these
questions. The objective was to generate and disseminate quantitative evaluations of a representa-
tive set of vendors’ Ada implementations targeted to various embedded processors. The investiga-
tions used a test suite of Ada programs comprising existing Ada benchmarks, a simulated real-
time application based on a Navy shipboard inertial navigation system (INS), and a new bench-
mark created specifically for the project.

Criteria for constructing the testbed included requirements for each tested compiler (for example,
the smallest value of the pre-defined “Duration” type should be less than 100 microseconds) and
its runtime system (for example, the overhead for a context switch should be less than 200 micro-
seconds) [Weiderman 1987b]. An investigation of existing benchmarks led to the selection of the
University of Michigan Ada benchmarks [Clapp 1986] and the ACM Special Interest Group on
Ada (SIGAda) Performance Issues Working Group (PIWG) benchmarks as the initial test suites
[Donohoe 1987].

The testbed itself was a host-target environment in which a cluster of Digital Equipment Corp.
Microvax II host machines were connected to a set of target single-board computers with proces-
sors, such as a 20 MHz Motorola MC68020, a 16 MHz Intel i80386, and a 15 MHz Fairchild
1750A (with a MIL-STD-1750A instruction set architecture). The Ada cross-compilers for the tar-
get boards came from DDC-I, Systems Designers, Tartan Laboratories, TeleSoft, and Verdix. The
testbed also included a logic analyzer because one of its construction criteria was the requirement
for hardware verification of software timing results. The effort soon evolved beyond the objective
of evaluating Ada and was broadened into the Real-Time Embedded Systems Testbed (REST).

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Running the initial benchmark suites on the testbed yielded timing data for individual language
features (e.g., subroutine calls, task activation, and exception handling), for collections of lan-
guage features (matrix multiplication and fast Fourier transform), and for runtime environment
features (task scheduling and memory management). They also provided insights into the limita-
tions of the benchmarks themselves [Altman 1987a, 1987b]. These insights, coupled with the
need to investigate runtime features not supported by the initial benchmarks, led to the creation of
the Hartstone benchmark.

Hartstone is a synthetic benchmark for hard real-time applications [Weiderman 1989b]. “Hard”
real-time applications must meet their specified execution deadlines, as opposed to “soft” real-
time applications, where a statistical distribution of response times is acceptable. The “stone” part
of the Hartstone name comes from the influence of two important synthetic benchmarks,
Whetsone [Curnow 1976] and Dhrystone [Weicker 1984]. Hartstone was created specifically to
address deadline-driven computing in Ada, something that currently available benchmarks did not
address. The benchmark mimics a real-time application by requiring the completion of a synthetic
workload, distributed among several concurrent tasks, within a specified time period.

In parallel with the Hartstone experiments, the testbed also used the simulated INS to collect em-
pirical data on the use of Ada in a time-critical application [Meyers 1988]. In addition to function-
ing as a composite benchmark, the INS provided an artifact for investigating runtime system sup-
port for alternative scheduling policies and the use of Ada in distributed environments. The INS
work benefited greatly from having a resident affiliate at the SEI from the U.S. Navy, who con-
tributed a real INS specification, and one from the Australian Department of Defence, who helped
adapt the specification to meet the design criteria for a composite benchmark based on the INS.

As DoD programs began choosing other high-level languages such as C, the SEI was asked to
support evaluation of the runtime performance of compilers for those languages. The testbed was
expanded to satisfy this need for a broader range of real-time system performance issues.

 The Consequence: Empirical Results for Runtime Performance Hypotheses

The testbed demonstrated the need to validate vendors’ performance claims with careful experi-
mentation. The initial benchmark runs showed that (a) numbers must be interpreted in light of the
specific configurations and parameter settings established for the tests, and (b) even carefully con-
structed benchmarks have limitations that can produce anomalous results.

Running Hartstone revealed the wide variation in the timing behavior of various Ada runtime sys-
tems. The timing resolution of the system-provided clock varied by three orders of magnitude,
even for different compilers running on the same target. The timing resolution and behavior of the
Ada “delay” statement (granularity, overall accuracy, and accuracy near zero) were highly corre-
lated with the timing behavior of the system clock. Both had a significant impact on the Hartstone
results. Hartstone stress testing also exposed bugs in the runtime environment of several Ada
compilers. These were usually manifested as missed deadlines by high-priority, high-frequency
Hartstone tasks [Donohoe 1990].

The testbed team worked with several compiler vendors to resolve these issues. The team also
collaborated with the creator of the original Whetstone benchmark [Curnow 1976] at the National
Physical Laboratory in the United Kingdom to refine the testbed’s Ada version of the Whetsone

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

benchmark. Results of testbed experiments were documented in technical reports and papers and
presented at DoD and industry workshops.

Both Hartstone and the INS simulator contributed important artifacts and results to two other SEI
efforts: the Real-Time Scheduling in Ada (RTSIA) effort and the Distributed Ada Real-time Ker-
nel (DARK). Both benefited from early testbed experimentation with a programmable real-time
clock device driver and the design and test of approaches to periodic task scheduling. Members of
the testbed team also collaborated with the Advanced Real-Time (ART) project at Carnegie
Mellon University. Several DoD programs based language and processor decisions on the runtime
evaluations provided through this testbed.

 The SEI Contribution

The testbed validated the earlier benchmarking contributions of organizations such as PIWG and
the University of Michigan. It also contributed a new benchmark, Hartstone, to address a gap in
the area of measuring deadline-driven computing. Hartstone provides a highly parameterized
benchmark capable of stress testing Ada runtime systems by varying the workload, priority, fre-
quency, and number of concurrent tasks to be executed. At the time the REST project concluded,
organizations other than the SEI were proposing to create a distributed version of Hartstone and to
implement it in programming languages other than Ada. The lessons learned from the testbed ex-
periments were incorporated into a comprehensive guide to the selection and evaluation of Ada
compilers as a companion to the Ada Adoption Handbook [Weiderman 1989a].

 References

[Altman 1987a] Altman, Neal & Weiderman, Nelson. Timing Variation in Dual Loop Bench-
marks (CMU/SEI-87-TR-021). Software Engineering Institute, Carnegie Mellon University,
1987. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10335

[Altman 1987b] Altman, Neal. Factors Causing Unexpected Variations in Ada Benchmarks
(CMU/SEI-87-TR-022). Software Engineering Institute, Carnegie Mellon University, 1987.
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=10341

[Clapp 1986] Clapp, Russell M.; Duchesneau, Louis; Vols, Richard A.; Mudge, Trevor N.; &
Schultze, T. “Toward Real-Time Performance Benchmarks for Ada.” Communications of the
ACM 29, 8 (August 1986): 760-778.

[Curnow 1976] Curnow, H. J. & Wichmann, B. A. “A Synthetic Benchmark.” The Computer
Journal 19, 1 (February 1976): 43-49.

[Donohoe 1987] Donohoe, Patrick. A Survey of Real-Time Performance Benchmarks for the Ada
Programming Language (CMU/SEI-87-TR-028). Software Engineering Institute, Carnegie
Mellon University, 1987. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10381

[Donohoe 1990] Donohoe, Patrick. Hartstone Benchmark Results and Analysis (CMU/SEI-90-
TR-007). Software Engineering Institute, Carnegie Mellon University, 1990. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?assetID=11177

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/3-DARK%20130924.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/3-DARK%20130924.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/4-Ada%20Adoption%20Handbook%20130924.docx
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10335
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=10341
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10381

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[Meyers 1988] Weiderman, Nelson & Meyers, B. Functional Performance Specification for an
Inertial Navigation System (CMU/SEI-88-TR-023). Software Engineering Institute, Carnegie
Mellon University, 1988. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10707

[Weicker 1984] Weicker, R. P. “Dhrystone: A Synthetic Systems Programming Benchmark.”
Communications of the ACM 27, 10 (October 1984):1013-1030.

[Weiderman 1987a] Weiderman, Nelson; Borger, Mark; Cappellini, Andrea; Dart, Susan; Klein,
Mark; & Landherr, Stefan. Ada for Embedded Systems: Issues and Questions (CMU/SEI-87-TR-
026). Software Engineering Institute, Carnegie Mellon University, 1987. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?assetID=10363

[Weiderman 1987b] Weiderman, Nelson. Criteria for Constructing and Using an Ada Embedded
System Testbed (CMU/SEI-87-TR-030). Software Engineering Institute, Carnegie Mellon Univer-
sity, 1987. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10389

[Weiderman 1989a] Weiderman, Nelson. Ada Adoption Handbook: Compiler Evaluation and Se-
lection Version 1.0 (CMU/SEI-89-TR-013). Software Engineering Institute, Carnegie Mellon
University, 1989. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10929

[Weiderman 1989b] Weiderman, Nelson. Hartstone: Synthetic Benchmark Requirements for Hard
Real-Time Applications (CMU/SEI-89-TR-023). Software Engineering Institute, Carnegie Mellon
University, 1989. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10995

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10707
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetID=10363
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetID=10363
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10389
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10929

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Distributed Ada Real-Time Kernel

 The Challenge: Provide Consistent Support for Ada in Real-Time Systems

As DoD programs began to seriously consider the use of Ada for real-time embedded systems,
some developers were not satisfied with Ada language features supporting distributed applications
for real-time systems. They wanted the flexibility to make modifications.

There were two proposals offered. The first was for an application-specific tailoring of runtime
environments and the addition of compiler-specific pragmas to enhance the real-time capabilities
of the language. The consequence of this approach would have meant that the implementation
would be compiler-dependent, thereby defeating one of the purposes of a common language,
namely, portability. The second proposal was for additional language features in the language.
This proposal was also problematic. The language was already defined, and a new round of lan-
guage definitions would delay its implementation. Potential users in the DoD needed an immedi-
ate solution.

 A Solution: A Distributed Ada Real-Time Kernel

Members of the SEI staff were convinced that applications engineers needed language functional-
ity, not language features [Firth 1987]. They argued that certain areas of functionality were above
and beyond the scope of any language, including Ada. They set out to show that it would be pos-
sible to leave the decisions about runtime to the applications software and systems engineers who
understood the intricacies of the systems they were developing. Their view supported the Ada
Joint Program Office perspective that the application-specific runtime library should be consid-
ered an integral part of the application, not part of the compiler, and set out to use the Ada pack-
age concept as the means of handling distribution and real-time scheduling.

The SEI team built a prototype kernel and made it available for others to use. The kernel commu-
nications model consisted of a set of primitives that could be thought of as an underlying set of
primitives connected by data paths, following the ISO reference model [Tenenbaum 1981, Zim-
merman 1980]. Using this model, the target hardware, the physical layer, and the kernel then im-
plemented the data link, network, and transport layers. The transport layer was visible to the ap-
plications development team, while the data link and network layers were encapsulated (hidden)
by the transport layer. The applications code then would implement the session, presentation, and
applications layers. Errors in a lower layer were reported by the transport layer.

The kernel could then be implemented on each processor in the distributed system. As a result,
when developing a process, the software engineer need not know where the other processes would
be located, whether on a single processor or across multiple processes. The kernel communication
primitives would be used for all inter-process communication [Bamberger 1988].

 The Consequence: A Prototype Demonstration

The prototype kernel was made available for others to tailor for their applications. It provided a
tangible demonstration that the Ada language did not need new features and that it was capable of
supporting distributed real-time applications. The Boeing Co. teamed with Wichita State Univer-
sity to successfully port it to a Motorola 68000-based system [Tomayko 1990]. Although no spe-
cific system is known to have used the specific code, it nevertheless offered confidence that Ada

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

could be used successfully in the applications for which it was intended. One compiler vendor
adopted the kernel as the basis for its runtime approach.

 The SEI Contribution

The SEI developed this prototype in parallel with other, complementary, efforts. Compiler ven-
dors were using the Ada package concept to provide primitives for the applications engineers to
manage their distributed, real-time applications. Indeed, this approach became the norm. By mak-
ing the code of the kernel widely available, the SEI demonstrated that Ada could be used for its
intended purpose and provided confidence to the early adopters that such an approach was not
only feasible, but would be supportable.

 References

[Bamberger 1988] Bamberger, Judith; Coddington, Timothy; Firth, Robert; Klein, Daniel; Stinch-
comb, David; Van Scoy, Roger; & Colket, Currie. Distributed Ada Real-Time Kernel (CMU/SEI-
88-TR-017). Software Engineering Institute, Carnegie Mellon University, 1987. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?assetID=10661

[Firth 1987] Firth, Robert. “A Pragmatic Approach to Ada Insertion,” 24-25. Proceedings of the
International Workshop on Real-Time Ada Issues, Devon, England, May 13-15, 1987.

[Tenenbaum 1981] Tenenbaum, A. S. “Network Protocols.” Computing Surveys 13, 4 (December
1981): 453-459.

[Tomayko 1990] Tomayko, James & Smith, Brian. Experiences Porting the Distributed Ada Real-
Time Kernel (CMU/SEI-90-TR-017). Software Engineering Institute, Carnegie Mellon Univer-
sity, 1990. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=11211

[Zimmerman 1980] Zimmerman, H. “OSI Reference Model—The ISO Model of Architecture for
Open Systems Interconnections.” IEEE Transactions on Communications COM-28, 2 (February
1980): 425-432.

http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetID=10661
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetID=10661
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=11211

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Ada Adoption Handbook

 The Challenge: Where and When to Adopt Use of the Ada Language

When the DoD mandated the use of the Ada language, compilers, runtime systems, and the sup-
porting programming environments were just coming to market. While they held the promise of
making software development for real-time systems more effective, there was considerable uncer-
tainty on the part of DoD program managers who had to make difficult decisions about the tech-
nical maturity and the production quality of the language support as applied to their system devel-
opments. In some cases, although compilers and supporting environments were available, code
generators for the embedded processors were still in development and the runtime systems for
those processors unproven. As a result, there remained those who were skeptical that a higher or-
der language could be used for real-time embedded systems. While there were some early success
stories and considerable pressure on the DoD program managers, there was also a considerable
amount of uncertainty, often based on bias or myth rather than hard data.

 A Solution: The Ada Adoption Handbook

The SEI had committed to helping those DoD program managers who chose to use Ada to do so
successfully. Efforts such as the Ada Embedded System Testbed were initiated to provide pro-
gram managers with the kind of data that allowed them to assess the maturity of the language sup-
port for specific embedded processors. While the testbed was under development, compiler ma-
turity for specific processors was just one of many questions that remained unanswered. In some
cases, program managers were avoiding the decision or leaning toward the use of other high-level
languages because of the lack of authoritative data (of any sort) and the lack of “honest broker”
guidance. The Air Force program manager for the SEI asked that the SEI develop definitive guid-
ance upon which DoD program managers could base an informed decision.

By that time, the SEI had several members of the technical staff with a great deal of experience
with Ada and with real-time systems. Nevertheless, the requested effort was daunting since there
was so much difference in opinion in the software development community between those who
understood the promise of Ada and those who were adamantly opposed to its use. The SEI com-
mitted to providing an honest assessment, providing the pros and cons of adopting the language,
independent of DoD mandate.

The SEI embarked on a strategy that has been employed on many of its efforts. Relying on its in-
ternal expertise to separate fact from fiction, the SEI invited comment from those with experience
with the language, whether positive or negative. The handbook authors organized this information
and supplemented it with their own experience to produce a first draft that was distributed widely
for comment. Comments on this first draft were addressed to produce a second draft, which was
distributed for additional comment. Subsequent drafts followed the same process. Recognizing
that the SEI was dealing with a moving target in that the products to support Ada were maturing
at an accelerating rate, the SEI and the Air Force agreed that it was in everyone’s best interest to
distribute the final version widely to DoD program managers in May 1987 [Foreman 1987]. As
the technology supporting Ada changed, the information in the document became obsolete. There-
fore, based on requests from a broad constituency, the SEI produced an updated version of the
handbook in 1992 [Hefley 1992].

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-AEST-REST%20130924.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

In the handbook, significant emphasis was placed on providing information and suggesting meth-
ods that would help program and project managers succeed in using Ada across a broad range of
application domains. Although the issues were complex, they were not all unique to Ada. Many of
the issues addressed in the handbook must be addressed when developing any software-intensive
system in any programming language. The handbook focused on the following topics: program
management issues, including costs and technical and program control; Ada’s goals and benefits;
software tools, with emphasis on compiler validation and quality issues; the state of Ada technol-
ogy as it related to system engineering; the application of special-purpose languages; issues re-
lated to mixing Ada with other languages; possible productivity benefits resulting from software
reuse; and implications for education and training.

 The Consequence: Unbiased Guidance

The handbook provided unbiased guidance upon which
to make decisions about the use of Ada. Myths were
debunked, misinformation clarified, and some product
claims put in context. More than 6,000 copies were dis-
tributed, and the handbook became the most widely
read SEI publication to that point. The neutrality and
technical validity of the treatment helped establish the
SEI as a trusted source of information—the “honest
broker” reputation that is acknowledged and respected
by the software engineering community and that the
SEI continues to foster.

 The SEI Contribution

As with many other efforts in which the SEI has taken
the lead, much of the information in the handbook was
gathered from both the DoD and the industry making
up the DoD software supply chain. In addition to lead-
ership and organization, the SEI had the expertise to as-
sess the credibility of the information, separating fact
from fiction. The SEI recognizes that many senior peo-
ple in both industry and government invested their time
to influence the content and ensure its correctness. Nev-
ertheless, the SEI was responsible for writing the docu-
ment and accurately portraying the state of Ada and supporting technology at the time the hand-
book was published.

 References

[Foreman 1987] Foreman, John & Goodenough, John. Ada Adoption Handbook: A Program Man-
ager’s Guide (CMU/SEI-87-TR-009). Software Engineering Institute, Carnegie Mellon Univer-
sity, 1987. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10261

The View from Others

Despite the fact that some Ada
proponents felt the handbook was
too neutral with respect to promot-
ing the language and some Ada
opponents felt it promoted Ada, no
one disagreed with the accuracy of
the content. DoD program manag-
ers reported that the information
provided a basis for making deci-
sions, for asking important ques-
tions of their contractors, for justi-
fying and allocating funds for
development, and, in some cases,
for taking alternative approaches.
Prime contractors likewise re-
ported that it provided them the in-
sight necessary to evaluate alterna-
tives when selecting the tech-
nology on which to base proposals.

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10261

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[Hefley 1992] Hefley, William; Foreman, John; Engle, Chuck Jr.; & Goodenough, John. Ada
Adoption Handbook: A Program Manager’s Guide, Version 2.0 (CMU/SEI-92-TR-029). Soft-
ware Engineering Institute, Carnegie Mellon University, 1992. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?assetID=11721

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=11721
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=11721

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Rate Monotonic Analysis

 The Challenge: Predicting Real-Time Systems’ Ability to Meet Performance
Deadlines

The majority of defense systems are real-time systems with hard performance deadlines. A major
challenge in designing a real-time system is the ability to predict, before the system is built,
whether the real-time deadlines will be met at runtime. This is roughly analogous to being able to
predict whether a bridge will stand before it is built. While structural engineers have the mathe-
matical tools to make such predictions, no such analytical tool was available for software engi-
neers designing real-time systems. Consequently, real-time behavior was difficult to predict. Most
designed systems were using cyclical executives with manually developed timelines. Even engi-
neers with significant prior experience had their systems fail, often catastrophically. As noted in
the 1992 National Research Council report Computing the Future, “The traditional method of
scheduling concurrent tasks is to lay out a timeline manually. A change might require the undo of
an entire timeline” [NRC 1992].

Adding to this risk was growing pressure from the operating community to acquire integrated sys-
tems, those in which the individual sensor inputs and controls are integrated into a single com-
puter or suite of computers. The F-22 aspiration for integrated avionics is one example [AFSAB
1988]. By the late 1980s, the traditional timeline approach was no longer able to handle the com-
plexity of real-time systems. It was time for a new approach, one based on solid theory and sup-
ported by analytic tools.

 A Solution: Rate Monotonic Analysis

In 1988, a faculty member and his graduate student at Carnegie Mellon University were working
under a contract from IBM Federal Systems Division to investigate a way of determining, in ad-
vance, whether a fiber optical network could meet all the real-time communication deadlines.
They found two theories from a 1973 paper [Liu 1973] proving that if a set of independent peri-
odic tasks has a worst-case processor utilization of less than 69 percent, then all the tasks’ jobs
will meet their deadlines, provided that higher priorities are given to tasks with higher rates. This
was called rate monotonic scheduling (RMS). RMS provided the basis for solving IBM’s prob-
lem, but IBM’s problem also highlighted the practical limitations of RMS. The same paper also
proved that, for a set of independent periodic tasks, if priority is assigned to jobs instead of to
tasks, using the earliest (job’s) deadline-first (EDF) algorithm, then all jobs’ deadlines will be met
as long as the worst-case processor utilization is less than 100 percent. This paper seemed to pro-
vide the underpinnings for a potentially practical theory for designing real-time systems. Natu-
rally, the CMU researchers first tried to extend EDF to address various practical concerns such as
task interaction.

Fortunately, the researchers were also given a set of challenging example applications. They
quickly determined that with EDF, the problem of maintaining system stability under transient
overload does not have low-complexity practical solutions. They also noticed that the 69 percent
bound is irrelevant in practice. First, practical control tasks form rate groups, and the schedulabil-
ity is over 90 percent instead of 69 percent. Second, given a set of periodic tasks that is con-
strained by the 69 percent bound, these tasks can be easily transformed to achieve much higher

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

processor utilization. The sample applications allowed them to make the critical decision to build
upon RMS instead of EDF. The result of their work was rate monotonic analysis (RMA).

RMA is the application of generalized rate monotonic scheduling [Sha 1984]. It provides the theo-
retic basis to bring engineering analysis to the design of real-time applications. It requires much
less information than the timeline approach and makes it much easier to accommodate integration
and evolution of complex real-time systems. RMA also provides the theoretic basis to bring engi-
neering analysis to real-time computing standards, such as languages, operating systems, middle-
ware, and hardware bus arbitration. Experience in applying RMA to real systems motivated the
SEI and collaborators to evolve new analytic tools.

 The Consequence: Engineering
Replaces Art

An important factor in RMA is the ability to minimize
priority inversion, where a high-priority task is blocked
by a lower priority task. It helps system designers pre-
dict whether task deadlines will be met before costly im-
plementation. This important factor has been instrumen-
tal in enabling RMA to influence a host of hardware and
software standards.

Today, RMA is a basic component in real-time compu-
ting textbooks and taught in many universities, such as
CMU and University of Illinois Urbana-Champaign. A
companion RMA handbook provides the definitive
guide for practitioners [Klein 1993]. RMA is also the
only real-time scheduling technology approved by the
Federal Aviation Administration for Level A avionic
software in networked control applications with distrib-
uted computers, sensors, and actuators. In other practical
applications, the F-16 was the first Air Force aircraft
that utilized generalized rate monotonic scheduling. In
2000, Lockheed Martin included RMS scheduling in the
F-35 design baseline, as it had become an established,
foundational engineering practice.

New Challenges: A fundamental assumption of real-
time scheduling theories, including RMA, is that the
worst-case execution time of a task is the same whether it runs alone or with other tasks. Proces-
sor cache memory invalidates this assumption. Current multicore architectures exacerbate this
problem, because software running in one core could cause severe delays in other cores via the
interference of shared last-level cache among cores. Just as RMA has changed many hardware
and software standards in the past, RMA offers promise that this multicore design problem will
also be fixed in the future. Currently, the University of Illinois at Urbana-Champaign is collabo-
rating with SEI and industry to address this new challenge.

The View from Others

The navigation payload software
for the next block of Global Posi-
tioning System upgrade recently
completed testing. ... This design
would have been difficult or im-
possible prior to the development
of rate monotonic theory.

– L. Doyle, and J. Elzey ITT,
Aerospace Communication
Division (p.1) [Doyle 1993]

Through the development of Rate
Monotonic Scheduling, we now
have a system that will allow
[Space Station] Freedom’s com-
puters to budget their time, to
choose between a variety of tasks,
and decide not only which one to
do first but how much time to
spend in the process.

– Aaron Cohen, Deputy
Administrator of NASA, in
an October 1992 lecture
(p.3) [Cohen 1992]

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 The SEI Contribution

The SEI was instrumental in the development of the rate monotonic scheduling paradigm, and its
technical staff played a crucial role in the development of the theory. The SEI connected researchers
with the user community to ensure that the theory would be relevant to practice. RMA transformed
real-time computing practice, and the SEI was instrumental in broadly transitioning the theory.

The SEI’s participation in the development of generalized RMS began in the late 1980s, when a
team was formed that involved the collaboration between the SEI, industry, and other departments
of CMU. This collaboration kept the basic research fo-
cused on generating the knowledge for solving high-im-
pact, recurrent real-time computing challenges. The team
provided consulting support to early adopters of this tech-
nology; and the rapid acceptance by industry enabled the
SEI to work with the standards committees to change re-
lated open standards on real-time computing so that RMS
would be supported consistently. The standards include
IEEE Futurebus+ and all the later bus arbitration stand-
ards, POSIX real-time extension (real-time OS standard),
Ada, real-time CORBA (middleware standard), and real-
time Java, among others.

The RMA team addressed real-time computing challenges
in the real-world evolving systems, including how many
priority levels should be used in hardware and software
standards; how to handle the task interaction in a way that
maximizes schedulability; and how to integrate the sched-
uling between aperiodic requests and periodic tasks. This
practical work guided the basic research to focus on diffi-
cult problems that matter most in practice. The SEI created
training workshops, consultation support for early adopters,
and a handbook for practitioners [Klein 1993].

The RMA work serves as an excellent example of the SEI
role in conducting research that is inspired by real-world
needs and ultimately improves the practice of software en-
gineering. As noted by IEEE in promoting an SEI staff
member to IEEE Fellow in 1998, the contribution “enabled
the transformation of real-time computing practice from an
ad hoc process to an engineering process based on analytic
methods.” [UI 2014].

The View from Others

When was the last time you saw a
room of people cheer a group of
computer science theorists for
their significant practical contri-
bution to advancing human
knowledge? :-) It was quite a mo-
ment.

– Dr. Michael Jones, reporting
after RMA enabled the
rescue of Mars Pathfinder
when it encountered real-
time computing problems
on Mars [Jones 1997]

The 1992 National Academy of
Science report, Computing the Fu-
ture, described the generalized rate
monotonic scheduling theory as “a
major accomplishment in com-
puter science” [NRC 1992].

The DoD saw generalized RMS as
“a major payoff,” and made this
declaration in its 1991 Software
Technology Strategy (pp. 8-15)
 [DoD 1991]

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 References

[AFSAB 1988] Air Force Science Advisory Board (SAB). Integrated Avionics. SAB, 1988.

[Cohen 1992] Cohen, Aaron. “Charting The Future: Challenges and Promises Ahead of Space Ex-
ploration” (Lecture). University of Illinois, Urbana-Champaign, October 28, 1992. Available
through https://www.coursehero.com/file/9421167/lect17rmaexactsol/

[DoD 1991] Department of Defense. Software Technology Strategy. DoD, 1991.

[Doyle 1993] Doyle, L. & Elzey, J. Successful Use of Rate Monotonic Theory on a Formidable
Real-Time System. (Technical report). ITT, Aerospace Communication Division, 1993.

[Jones 1997] Jones, Mike. “What Really Happened on Mars Pathfinder.” The Risks Digest 19, 49
[December 7, 1997]. http://catless.ncl.ac.uk/Risks/19.49.html#subj1

[Klein 1993] Klein, Mark. H.; Ralya, Thomas; Pollak, Bill; Obenza, Ray; & Harbour, Michael
Gonzales. A Practitioner’s Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis
for Real-Time Systems. Kluwer Academic Publishers, 1993. (ISBN 0-792393619).

[Liu 1973] Liu, C. L. & Layland, J. W. “Scheduling Algorithm for Multiprogramming in a Hard
Real-Time Environment.” Journal of the ACM 20, 1 (1973): 46-61.

[NRC 1992] National Research Council. Computing the Future: A Broader Agenda for Computer
Science and Engineering, Selected Accomplishment Section (p. 193). National Academy Press,
1992.

[Sha 1984] Sha, Lui & Goodenough, John. “Generalized Rate-Monotonic Scheduling Theory: A
Framework for Developing Real-Time Systems.” IEEE Proceedings 82, 1 (January 1984): 68-82.

[UI 2014] University of Illinois. Cyber Physical Systems Integration Lab. http://publish.illi-
nois.edu/cpsintegrationlab/about/history/ (2014).

http://publish.illinois.edu/cpsintegrationlab/about/history/
http://publish.illinois.edu/cpsintegrationlab/about/history/
https://www.coursehero.com/file/9421167/lect17rmaexactsol/
http://catless.ncl.ac.uk/Risks/19.49.html#subj1

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Simplex Architecture

 The Challenge: Ensuring the Integrity of Safety-Critical Systems

Organizations rarely have the resources and technologies to make software systems flawless. Fre-
quently, designers also have to deal with the fact that less than 15 percent of a system’s code is
newly created for a particular project. Much of the legacy code has known and unknown defects.
It boils down to having different grades of code in practical systems: different components come
with different levels of quality and with different price tags.

Furthermore, safety-critical components cannot be fully isolated. These components need to inter-
act with less reliable and even unsafe components safely. For example, the flight control compo-
nent in an autopilot is certified to DO178B Level A (the highest level). However, it needs to ac-
cept guidance commands from a flight guidance system that is only certified to Level C.
Nevertheless, avionics certification requires that Level A software must still function correctly in
spite of the software failures in less critical components [RCTA 1992]. In medical systems, pa-
tient-controlled analgesia (PCA) is commonly used after a major surgery. When a patient pushes a
button, morphine sulfate (or similar drug) will flow into the patient’s blood stream via the infu-
sion pump. Morphine overdoses can be fatal and, indeed, there were fatal accidents in early gener-
ations of PCAs.

In this example, the PCA controller is a safety-critical component, but it needs to take commands
from a patient whose actions must be assumed to be unsafe. In the first example, the Level A
flight controller has to take guidance commands from the less reliable Level C flight guidance
subsystem.

 A Solution: The Simplex Architecture

The SEI developed an architecture template, called the Simplex architecture, that supports the
overall safety of a system that is composed of both reliable/safe components and less reliable/less
safe components [Sha 2001].

Under the Simplex architecture, a system is divided into two parts: a complex component that
cannot be fully verified but is needed to provide important service, and a high-assurance control
subsystem that is simple and fully verified. A Simplex architecture is designed in such a way that
(1) complex components cannot corrupt or interfere with the execution of the high-assurance sys-
tem and (2) the data and/or commands from the complex component will not be used unless the
resulting system state can be checked in real time that it is remaining well within the safety and
stability envelope. Otherwise, the safety controllers put the system into safety mode.8

The relation between complex and simple safety controllers must be verified as well formed in the
Simplex architecture. This means that the safety controller can use the service of the complex
components but the system safety does not depend on the correct functioning of complex compo-
nents. In short, the key principle of Simplex architecture is to use, but not depend on, the service
of complex or legacy components whose correctness cannot be fully verified. This principle is

8 In automated flight control, this means letting the pilot take over. In PCA, this means stopping the

morphine and alerting nurses.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

also known as using simplicity to control complexity. A key factor in applying this principle is to
have a simple computation of the bounds to be expected from the more complex component. In
the case of the PCA example, the simple bounds might be based on known allowable quantities of
morphine over a specific period, factored by the patient’s weight. As long as the more complex
system (the human) does not exceed those allowable bounds, the human can employ varying
amounts of morphine to combat experienced pain, with each patient using his or her own pain tol-
erance as a guiding factor (the complex component).

The Simplex architecture also ensures predictable and guaranteed timing behaviors in spite of fail-
ures of complex components and allows restarting or replacing complex components during oper-
ation. Simplex architecture also enables switching the control to alternative components safely.
This can be done automatically so that if one complex controller fails, a second, alternative con-
troller using different algorithms can be invoked. An important side effect of this feature is that
developers can incrementally compile a new complex controller and switch control to that con-
troller while the system is running.

 The Consequence: Increased Reliability of Safety-Critical Systems

The architecture principles have been applied successfully to many defense programs as well as
commercial systems. Notable applications of Simplex architecture principles include the F-22 and
F-35. In acknowledging support from the SEI and the University of Illinois at Urbana-Champaign
support during the implementation of those systems, DoD leadership clearly shows that the tech-
nology has been highly regarded.

 The SEI Contribution

The Simplex architecture is a software-fault-tolerant architecture. Prior to its development, the
dominant software-fault-tolerant approach was N-version programming [Lyu 1995]. It was shown
that the Simplex architecture significantly outperforms N-version programming under a wide
range of conditions [Sha 2001].

The Simplex architecture grew out of research at the SEI, and three prototype systems were devel-
oped to demonstrate application of the concept. They include an inverted pendulum for experi-
mental purposes, a diving control system funded by the Navy, and an F-16 advanced maneuvering
control study using Lockheed Martin’s simulator and funded by the Air Force. Important applica-
tions and extensions include the support of safety engineering in networked medical device in-
teroperability (sponsored by the National Institutes of Health and led by Massachusetts General
Hospital) and its applications to enhance the security of electric power networks (led by the SEI).

Recent extensions and development of technological advances include the System Simplex archi-
tecture, in which the safe controller is implemented in field programmable gate arrays (FPGA)
[Bak 2009]. System Simplex is robust against operating system failures and security attacks on
the application processor. A more economical variant of System Simplex architecture is to imple-
ment the safety controller on a secured core in a multicore chip. Currently, the SEI and the Uni-
versity of Illinois Urbana-Champaign are collaborating on the extension of the System Simplex
architecture to secure a power generation and distribution network. Another extension is the sup-
port of networked control systems, in which the stability enveloped accounts for the implications
of distributed control challenges [Yao 2013]. An ongoing research project in extending Simplex is

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

to integrate Simplex architecture with an L1-adaptive controller designed to tolerate mechanical
failures. The resulting technology is called L1-Simplex, which is designed to tolerate concurrent
software and mechanical failures under a known fault model.

 References

[Bak 2009] Bak, S.; Chivukula, D.; Adekunle, O.; Sun, M.; Caccamo, M.; & Sha, L. “The Sys-
tem-Level Simplex Architecture for Improved Real-Time Embedded System Safety.” Proceed-
ings of the 15th IEEE Real-Time and Embedded Technology and Applications Symposium. RTAS
2009, San Francisco, CA, April 13-16, 2009. IEEE, 2009.

[Lyu 1995] Lyu, Michael R, editor. Software Fault Tolerance. John Wiley & Sons, 1995 (ISBN
0-471958888). http://www.cse.cuhk.edu.hk/~lyu/book/sft/

[RCTA 1992] RCTA Inc. Software Considerations in Airborne Systems and Equipment Certifica-
tion. (DO-178B), December 1, 1992.

[Sha 2001] Sha, L. “Using Simplicity to Control Complexity.” IEEE Software 18, 4 (July/August
2001): 20-28.

[Yao 2013] Yao, J.; Liu, X.; Zhu, G.; & Sha, L. “NetSimplex: Controller Fault Tolerance Archi-
tecture in Networked Control Systems.” IEEE Transactions on Industrial Informatics 9, 1 (Febru-
ary 2013): 346-256.

http://www.cse.cuhk.edu.hk/%7Elyu/book/sft/

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Software for Heterogeneous Machines

 The Challenge: Meeting Performance Goals for Real-Time Applications
Involving Heterogeneous Machines

Around the time that the SEI was formed, DARPA was sponsoring research, under the Strategic
Computing Initiative, in a number of computation-intensive, real-time applications, such as auton-
omous land vehicles. These applications required processing data obtained from sensors (for ex-
ample, TV cameras, radar, and sonar), extracting basic features of the terrain, consulting low-level
knowledge sources to build hypotheses about paths and obstacles, and consulting higher level
knowledge sources to make decisions about current vehicle location, desired target location, and
ways to arrive there.

Given the computer technology of the day, the demands for computing cycles were so great that
conventional processors could not meet all the performance goals. Certain tasks in the applica-
tions required special-purpose processors capable of executing some tasks very quickly—but such
processors were perhaps not very useful for other tasks.

 A Solution: Software for Heterogeneous Machines (Durra)

Recognizing this future need to support applications running on networks of these special-purpose
processors executing concurrent tasks, the SEI initiated research in software for heterogeneous
machines. This work continued from 1985 through 1992. The heterogeneous machines targeted
by this research consisted of general-purpose processors, special-purpose processors, memory
boxes, and switches that could be configured in arbitrary logical networks. The application tasks
were independent, large-grained, concurrent programs, written in various programming languages
and communicating via message passing protocols. Heterogeneous machines, such as the one as-
sumed in this research, pushed the leading edge of software engineering [Barbacci 1988].

By 1991, the research focused on improving the practice of developing and maintaining distrib-
uted systems. The SEI had developed a language and methodology (Durra)9 for implementing dis-
tributed, real-time applications on heterogeneous computer systems [Barbacci 1986a, 1997, 1987;
Doubleday 1992]. The SEI also developed a runtime environment to support distributed applica-
tions that use heterogeneous machines [Weinstock 1989].

This research improved the state of the practice of software engineering by integrating techniques
for specifying the software structure of applications, specifying reusable component programs,
and specifying the timing and functional behavior of component programs and applications [Bar-
bacci 1986b].

Much of the research was done in collaboration with the CMU Department of Computer Science
(now part of the School of Computer Science), building on and leveraging its work on Nectar [Ar-
nould 1989], a prototype heterogeneous machine that was also funded by DARPA to develop ap-
plications for an autonomous land vehicle.

9 The name Durra is not an acronym. Rather it came from Sorghum bicolor, commonly called sor-

ghum and also known as durra, jowari, or mil—a grass species cultivated for its edible grain. Since
the project was dealing with large-grained parallelism, the name seemed appropriate.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 The Consequence: Successful Demonstration in Prototype Systems

As is often the case with software research conducted before the hardware is fielded that would
make the software capabilities necessary for real-world systems, Durra was useful primarily in
demonstrations. Those demonstrations gave software engineers the conceptual framework for
later application of the principles involved.

The Durra language and runtime technologies were used to support a demonstration project at
TRW Defense Systems Group. Specifically, the technology was demonstrated in the context of a
command, control, communications, and intelligence (C3I) application developed by TRW, im-
plementing a node using reusable components [Barbacci 1989]. The experiment illustrated the de-
velopment of a typical Durra application.

The Institute for Simulation and Training at the University of Central Florida used the Durra lan-
guage and methodology as a tool for analyzing network configurations and computer-generated
vehicles in a distributed simulation and training application. Durra aided them in addressing prob-
lems related to multiple protocols, multiple levels of fidelity, and multiple technologies used
throughout their simulations.

The Hughes Aircraft Co. used the technology to help evaluate the real-time performance of an ar-
chitecture prior to implementation. The performance of a highly parallel architecture depends
upon the match of the algorithm to the hardware. A system designer needs to address questions of
the form, “Given an algorithm, on which architecture would it run most efficiently?” or “Given an
architecture and an algorithm, what can be done to improve system performance?”

 The SEI Contribution

The Durra language was an early example of an architecture description language (ADL). It
demonstrated the usefulness and possibility of meaningful application programming, what we
would now call programming at the subsystem and system system-of-systems level. It showed
how programming at the application level can be used for real-time analysis. In addition, it intro-
duced important concepts, such as the separation of application structure from behavior and how
to deal with configuration and fault-tolerance issues at this level. Durra was not the only such lan-
guage being developed at the time. (Conic is an example; concepts in Conic influenced Durra and,
in turn, Durra influenced Conic [Magee 1989].) There has since been a long line of such lan-
guages, including UML, Meta-H [Vestal 1993], and AADL. Each of these languages was, to some
extent, influenced by concepts from Durra.

 References

[Arnould 1989] Arnould E.; Bitz, F.; Cooper, E.; Kung, H. T.; Sansom R.; & Steenkiste, P. “The
Design of Nectar: A Network Backplane for Heterogeneous Multicomputers,” 205-206. ASPLOS-
III Proceedings - Third International Conference on Architectural Support for Programming Lan-
guages and Operating Systems., Boston, MA, April 3-6, 1989. ACM, 1989.

[Barbacci 1986a] Barbacci, Mario. Durra: A Task-Level Description Language Preliminary Ref-
erence Manual (CMU/SEI-86-TR-003). Software Engineering Institute, Carnegie Mellon Univer-
sity, 1986. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10153

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[Barbacci 1986b] Barbacci, Mario & Wing, Jeannette. Specifying Functional and Timing Behav-
ior for Real-Time Applications (CMU/SEI-86-TR-004). Software Engineering Institute, Carnegie
Mellon University, 1986. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10157

[Barbacci 1987] Barbacci, Mario R.; Weinstock, Charles B.; & Wing, Jeanette M. “Durra: Lan-
guage Support for Large-Grained Parallelism,” 56-57. Proceedings from the Second Workshop on
Large-Grained Parallelism. Hidden Valley, PA, October 11-14, 1987. Carnegie-Mellon Univer-
sity, 1987.

[Barbacci 1988] Barbacci, M. R.; Weinstock, C. B.; & Wing, J. M. “Programming at the Proces-
sor-Memory-Switch Level,” pp. 11-15. Proceedings of the 10th International Conference on Soft-
ware Engineering (ICSE). Singapore, April 11-15, 1988. IEEE, 1988.

[Barbacci 1989] Barbacci, Mario; Doubleday, Dennis; & Weinstock, Charles. Command, Control,
Communications, and Intelligence Node: A Durra Application Example (CMU/SEI-89-TR-009).
Software Engineering Institute, Carnegie Mellon University, 1989. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?assetID=10905

[Barbacci 1993] Barbacci, M. R.; Weinstock, C. B.; Doubleday, D. L.; Gardner, M. J.; & Lichota,
R. W. “Durra: a Structure Description Language for Developing Distributed Applications.” Soft-
ware Engineering Journal 8, 2 (March 1993): 83-94. http://ieeex-
plore.ieee.org/stamp/stamp.jsp?tp=&arnumber=206966&isnumber=5294

[Doubleday 1992] Doubleday, Dennis & Barbacci, Mario. Durra: A Task Description Language
User’s Manual (Version 2) (CMU/SEI-92-TR-036). Software Engineering Institute, Carnegie
Mellon University, 1992. http://www.sei.cmu.edu/library/abstracts/reports/92tr036.cfm

[Magee 1989] Magee, J.; Kramer, J.; & Sloman, M. “Constructing Distributed Systems in Conic.”
IEEE Transactions on Software Engineering 15, 6 (June 1989).

[Vestal 1993] Vestal, S. & Binns, P. “Scheduling and Communication in MetaH,” 194-200. Pro-
ceedings of the Real-Time Systems Symposium (RTSS). Durham, NC, December 1-3, 1993. IEEE,
1993.

[Weinstock 1989] Weinstock, Charles. Performance and Reliability Enhancement of the Durra
Runtime Environment (CMU/SEI-89-TR-008). Software Engineering Institute, Carnegie Mellon
University, 1989. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10901

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10157
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?assetID=10905
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?assetID=10905
http://ieeex-plore.ieee.org/stamp/stamp.jsp?tp=&arnumber=206966&isnumber=5294
http://ieeex-plore.ieee.org/stamp/stamp.jsp?tp=&arnumber=206966&isnumber=5294
http://www.sei.cmu.edu/library/abstracts/reports/92tr036.cfm

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Real-Time Multicore Scheduling

 The Challenge: Taking Advantage of Multicore Chips

The trend to increase processing power has shifted from increasing the frequency of execution to
multiplying the number of processors embedded in a single chip. This trend is known as multicore
chips or chip-level multiprocessor (CMP). The increase in processing power is generated by in-
creasing the number of instructions that can be executed concurrently rather than by reducing the
time to execute a single instruction. Consequently, an application experiences a speedup in its ex-
ecution only if it has enough instructions that can be executed concurrently—parallelizable in-
structions. The additional processor capacity made available by having additional cores in a mul-
ticore processor can be exploited only if enough parallel instructions can be found in the
application. Unfortunately, this limitation is misaligned with the sequential programming model
prevailing in current software development practice, where application code is generally devel-
oped as a single sequence of instructions under the assumption that they will not execute in paral-
lel.

In many real-time systems, a fair amount of parallelization has already been exploited, but still
more is needed to cope with the growing demands of computation imposed on defense systems,
such as that imposed by the increased demand for autonomy in unmanned aerial vehicles (UAVs).
Today, real-time systems and applications have already been developed using threads that are
later scheduled with well-established schedulers to achieve predictable timing behavior. However,
the bulk of the scheduling research assumed a single core; and while multiprocessors (not multi-
core) are already being used and analyzed, such systems are not yet fully understood. For in-
stance, there are cases of anomalies where a system with N processors can miss deadlines with a
workload that is only just enough to fill one processor [Dhall 1978]. Similar problems occur when
threads distributed across multiple processors need to synchronize with each other, leading to idle
processors and poor utilization. Essentially, there are two aspects that must be considered: (1) al-
locating and mapping a thread to a processor and (2) determining the execution order on that pro-
cessor; that is, scheduling. The solution to these problems will very likely also involve a change in
the structure and in the abstractions used to develop these systems.

 A Solution: Real-Time Scheduling for Multicore Processors

In 2009, the SEI began to investigate real-time scheduling for multicore processors with a focus
on analyzing the problems of task-to-core allocation, synchronization, and the relationship be-
tween synchronization and task allocation. The focus was soon extended to analyze variations of
multicore processors that include graphical processor units (GPUs). While GPUs are typically
used to render graphics, they are often used for general parallel computation as well.

Previous work on scheduling resulted in an increase of the global scheduling utilization to 33 per-
cent for periodic tasks and 50 percent for aperiodic tasks [Andersson 2001, 2003]. Some other ap-
proaches chose to use quantized assignments of processor cycles to tasks with a scheduler that
calculates a scheduling window at fixed intervals [Srinivasan 2001, Anderson 2006]. However,
none of these efforts took into account the task interactions and different tasks and application
structures. The SEI partnered with Carnegie Mellon research faculty to explore the combination
of task scheduling and task synchronization, creating a coordinated allocation and synchronization
algorithm that can obtain up to twice the utilization of non-coordinated ones [Lakshmanan 2009].

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The increase in processing capacity offered by multicore processors has enabled smaller form fac-
tors that are highly relevant for defense systems, most notably UAVs. However, this trend also
brings two more challenges: the mixture of functionality of different criticality levels in the same
system and the dependency of the execution time of these functions on environmental conditions.

A system that contains functionality from different criticality levels is known as a mixed-critical-
ity system. In these systems, it is essential to ensure that low-critical tasks do not prevent high-
critical ones from meeting their timing requirements (deadlines). The SEI developed a family of
scheduling [de Niz 2009], allocation [Lakshmanan 2010], and synchronization [Lakshmanan
2011] algorithms, known as zero-slack scheduling algorithms, that implement what is known as
asymmetric temporal protection. Asymmetric temporal protection ensures that lower criticality
tasks cannot interfere with a higher criticality task, but a higher criticality task can steal CPU cy-
cles from lower criticality tasks, if needed. This asymmetric protection enabled the SEI to also ad-
dress the second issue of small-form-factor systems, namely, the variability of execution time.
This variability is common in autonomous algorithms. For instance, the execution time of colli-
sion avoidance algorithms depends on the number of objects encountered in the environment. The
asymmetric protection of the zero-slack scheduler allows engineers to double-book processor cy-
cles between high- and low- criticality tasks. This enables high-critical tasks to execute for a long
time when extreme environmental conditions occur (such as a large number of obstacles to avoid)
by completely stopping lower criticality tasks. Under normal conditions, these lower criticality
tasks can resume using the cycles not required by the higher criticality ones.

Additional complexities arising from multicore systems include a new memory hierarchy with
shared caches, and shared memory buses and core interconnects, as well as shared memory. These
complexities have an impact on the execution latency, particularly in the on-chip and off-chip
memory bandwidth that is achievable. The SEI has been exploring different approaches to address
these issues [Andersson 2012a].

Similarly, power consumption is now of significant interest in small defense vehicles (such as
UAVs) that have limited power capacities, and, for instance, running on batteries. For this case,
the SEI has developed an optimal algorithm for the selection of the frequency at which cores in a
multicore processor should be run [Moreno 2012].

Current SEI research is focused on scheduling schemes for parallelized tasks that need to be exe-
cuted in multiple cores simultaneously in order to meet their deadlines [Andersson 2012b]. This
imposes not only a challenge to decide which parts of a task need to be executed in which core,
but also how to analyze the use of shared memory that can cause delays in one core when a task in
another core accesses the same region of memory.

 The Consequence: Effective Use of Multicore Processors

The scheduling techniques being developed at the SEI enable practitioners to verify real-time sys-
tems using multicore processors. This is of critical significance, since the current practice has
been to either avoid the use of multicore processors or disable all processors except one so that
old techniques work.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 48
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The SEI work has triggered the interest of both NASA and Lockheed Martin Aeronautics, and the
SEI is investigating potential applications in their settings. SEI papers on mixed-criticality sched-
uling are among the most-cited papers in the literature.

 The SEI Contribution

This research is being conducted in collaboration with Carnegie Mellon research faculty. All
members of the team have made previous contributions to the theory and practice of scheduling
for real-time systems. Since all results are those of the full team, it is not possible to isolate the
specific contributions made by the SEI.

SEI papers on mixed-criticality scheduling are among the most-cited papers in the literature.

 References

[Anderson 2006] Anderson, J.; Calandrino, J. M.; & Devi, U. C. “Real-Time Scheduling on
Multicore Platforms,” 179-190. Proceedings of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposium, San Jose, CA, April 4-7, 2006. IEEE, 2006.

[Andersson 2001] Andersson, B.; Baruah, S.; & Jonsson, J. “Static-Priority Scheduling on
Multiprocessors,” 193-202. Proceedings of the IEEE Real-Time Systems Symposium, London,
December 3-6, 2001. IEEE, 2001.

[Andersson 2003] Andersson, B.; Abdelzaher, T.; & Jonsson, J. “Global Priority-Driven
Aperiodic Scheduling on Multiprocessors.” International Parallel and Distributed Processing
Symposium, Nice, France, April 22-26, 2003. IEEE, 2003.

[Andersson 2012a] Andersson, Bjorn; Chaki, Sagar; de Niz, Dionisio; Daugherty, Brian; Kegley,
Russell; & White, Jules. “Non-Preemptive Scheduling with History-Dependent Execution Time,”
363-372. Euromicro Technical Committee on Real-Time Systems (ECRTS). Pisa, Italy, July 11-13,
2012. IEEE, 2012.

[Andersson 2012b] Andersson, Bjorn & de Niz, Dionisio. “Analyzing Global-EDF for Multipro-
cessor Scheduling of Parallel Tasks.” 16th International Conference on Principles of Distributed
Systems (OPODIS). Rome, Italy, December 17-20, 2012. Springer, 2012.

[de Niz 2009] de Niz, Dionisio; Lakshmanan, Karthik; & Rajkumar, Raj. “On the Scheduling of
Mixed-Criticality Real-Time Tasksets.” IEEE Real-Time Systems Symposium (RTSS). Washing-
ton, D.C., December 1-4, 2009. IEEE, 2009.

[Dhall 1978] Dhall, K. & Liu, C. L. “On a Real-Time Scheduling Problem.” Operations Research
26, 1: 127-140.

 [Lakshmanan 2009] Lakshmanan, Karthik; de Niz, Dionisio; & Rajkumar, Raj. “Coordinated
Task Scheduling, Allocation, and Synchronization in Multiprocessors.” IEEE Real-Time Systems
Symposium. Washington, D.C., December 1-4, 2009. IEEE, 2009.

[Lakshmanan 2010] Lakshmanan, Karthik; de Niz, Dionisio; & Rajkumar, Raj. “Resource Alloca-
tion in Distributed Mixed-Criticality Cyber-Physical Systems.” 169-178. 30th International Con-
ference on Distributed Computing Systems (ICDCS), Genoa, Italy, June 21-25, 2010. IEEE, 2010.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[Lakshmanan 2011] Lakshmanan, Karthik; de Niz, Dionisio; & Ragunathan (Raj) Rajkumar.
“Mixed-Criticality Task Synchronization in Zero-Slack Scheduling,” 47-56. IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). Chicago, IL, April 11-14, 2011.

[Moreno 2012] Moreno, Gabriel & de Niz, Dionisio. “An Optimal Real-Time Voltage and Fre-
quency Scaling for Uniform Multiprocessors,” 21-30. IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applications (RTCSA). Seoul, Korea, August 20-22,
2012. IEEE, 2012.

[Srinivasan 2001] Srinivasan, A. & Anderson, J. “Optimal Rate-Based Scheduling on
Multiprocessors,” 189-198. Proceedings of the 34th Annual ACM Symposium on Theory of
Computing. Heraklion, Crete, Greece, July 6-8, 2001. ACM, 2001.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 50
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Integrated Methods for Predictive Analytic Composition and
Tradeoff

 The Challenge: Effective Real-Time Performance in Dynamic Environments

DoD missions often require systems that provide effective real-time performance in dynamic en-
vironments under constrained conditions. This performance requires designing systems to get
maximum utility from limited resources by performing both appropriate tradeoffs at design time
and appropriate adaptation at runtime.

In 2000, DARPA was conducting a research program designed to develop and transition critical
technology that would enable mission-critical systems to meet high-assurance, high-dependabil-
ity, high-adaptability DoD requirements. This was the Dynamic Assembly for System Adaptabil-
ity, Dependability, and Assurance (DASADA) Program [Mandak 2001]. The integrated methods
for predictive analytic composition and tradeoff (IMPACT) project was funded to contribute to
this program.

 A Solution: Development of Analytic Methods

The IMPACT project was a joint effort between the CMU School of Computer Science, the SEI,
and Lockheed Martin Aeronautics (LM-Aero). The goal was the development of analytic methods
to support the correct temporal composition of systems. The methodology focused on techniques
to construct systems having predictable timing performance and composed of pre-analyzed com-
ponents. The theory developed by this project formed an engineering basis for the design of real-
time systems. The targeted capability was the rapid assembly of complex, high-assurance DoD
systems operating in dynamic environments and having critical timing requirements and compu-
ting resource constraints. This capability could also be used to support both engineering tradeoff
analyses across multiple performance dimensions at system design time, and runtime adaptation
to mission, environment, and computing resource changes.

Lockheed Martin developed a model avionics problem applicable to the F-22 and F-35 Joint
Strike Fighters (JSF). Researching solutions to this problem was one direction of the IMPACT
work.

The team developed the temporal analytic composition theory (TACT), researching several tech-
nologies and integrating them into a powerful composition methodology. The component technol-
ogies were generalized rate monotonic analysis (GRMA), real-time queueing theory (RTQT),
quality-of-service resource allocation methodology (Q-RAM), and hierarchical scheduling.

Generalized rate monotonic analysis, as explained in another subsection, is a real-time scheduling
methodology designed to handle tasks with hard-deadline periodic tasks and soft-deadline aperi-
odic tasks. While GRMA offers a flexible resource management architecture, its application leads
to very conservative resource requirements. IMPACT technology and tools were used to improve
on this issue, offering high levels of resource utilization while preserving the system require-
ments. One such tool was TimeWiz.

Quality-of-service resource allocation methodology maximizes total system utility with limited
resources. Visual Q-RAM is an engineering tool that supports design-time prediction and tradeoff

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/5-Rate%20Monotonic%20Analysis%20130924.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

analysis as well as model tuning for runtime deployment of Q-RAM models. Guidance was devel-
oped for model tuning of the Q-RAM. Model tuning involves specifying a consistent set of Q-
RAM model parameters, including the utility values for quality dimensions and task weights. A
notation was also developed to support the expression of cross-task quality-level constraints to
achieve predictable degradation behavior [Rajkumar 1997]. The Visual Q-RAM software tool was
enhanced to support use-scenario walkthroughs and de-
velopment of models from predefined libraries of task
types. Use of this technology in DoD contexts was
demonstrated by developing a set of examples; these in-
cluded helicopter pilot mission support, phased array ra-
dar bandwidth allocation, and radar target-tracking algo-
rithm selection.

Real-time queueing theory provides accurate timing be-
havior predictions of real-time systems having stochastic
workloads. The theory can be used to assess the ability
of a system to meet the timing requirements under heavy
traffic conditions. It complements scheduling theories
such as generalized rate monotonic scheduling. Visual
RTQT is a tool that demonstrates the practicality of us-
ing RTQT. Important progress was made in the develop-
ment of RTQT and its application to avionics and com-
munication systems [Lehoczky 1996]. RTQT is a
significant innovation in the design and scheduling of
real-time systems in that it is capable of making exact
predictions of a system’s ability to meet the timing re-
quirements of real-time tasks where task arrivals and
computation requirements are stochastic. It extends
methodologies such as GRMA to a greatly broadened
framework. The RTQT project innovations include de-
velopment of an RTQT-based analysis of the temporal
behavior of the F-22 avionics challenge problem and an
RTQT analysis for feed-forward queuing networks and
for acyclic networks, leading to an analysis tool for the
determination of end-to-end schedulability require-
ments.

Hierarchical scheduling is a method based on GRMA
that enables a single schedulable physical resource, such
as a processor, to be partitioned into multiple isolated
virtual resources. Different algorithms and analysis tech-
niques can be used in each of the virtual resources, and
changes in the temporal properties within one virtual re-
source do not impact the temporal behavior within other virtual resources [Saewong 2002].

The View from Others

This group [CMU IMPACT]
demonstrated all proposed objec-
tives from the DASADA literature.
This group works closely with
Lockheed Martin on real time
scheduling and context testing on
the F-16 avionics platforms. CMU
is doing breadboard testing and
creating prototypes for a new ad-
vanced avionics suite proposed for
future aircraft development. An
evaluation of this system indicated
this group is ready to move on to
the next phase of the DASADA
program. (pp. 63-64)

Out of the 19 projects, there is
only a handful that should be con-
sidered for future funding based
upon their level of effort over the
past several months, as well as
their level of technology maturity
to be able in the next year to actu-
ally provide a component to insert
into the DASADA Dynamic Assem-
bly Toolkit. [One of those projects
is] CMU’s Integrated Methods for
Predictive Analytic Composition
and Tradeoff (IMPACT). (pp. 76-
77)

– Wayne S. Mandak and
Charles A. Stowell,
[Mandak 2001]

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The benefits of the IMPACT methodology and associated tools to DoD systems were made appar-
ent in two demonstrations: a phased array radar scheduling demonstration and an embedded avi-
onics simulation designed to support the F-22 and F-35 JSF programs.

The first demonstration (at the DASADA Demonstration and Exposition in July 2002) showed the
runtime use of Q-RAM. A visual demonstration represented a carrier under attack from a set of
enemy locations. With a variety of threats attacking the ship, the phased-array radar had to be
scheduled in such a way that the ship could destroy those threats. The radar, treated as a non-
preemptible resource, could be allocated to tracking targets in varying amounts to achieve differ-
ent levels of service quality or tracking error [Hansen 2004]. The mission-critical embedded sys-
tem demonstration illustrated the use of RTQT to assess the ability of a system to meet the timing
requirements of stochastic task sets (such as mission-awareness applications) under heavy work-
load conditions. When RTQT indicates that latency requirements are not met, it provides an engi-
neering basis for modifying the workload to achieve the desired latency within a specified degree
of certainty.

 The Consequence: Bringing an Analytic Basis to Engineering Dynamic
Systems

Work on the F-22 embedded avionics simulation provided new and valuable temporal and perfor-
mance analysis information to F-22 designers that was not previously available and that could be
used in the final refinement of the F-22 weapon system. Further, it provided insight into several
design improvements for legacy systems. System utilization, resource efficiency, and maintaina-
bility could be significantly enhanced using DASADA-developed design practices. Progress made
under DASADA allowed LM-Aero and CMU to propose a large-scale DASADA II experiment
centered on upgrading the F-22 mission computer temporal architecture. Results and insights from
this experiment aimed to reduce both new development and application rehost costs through the
analytic composition methodology developed under DASADA I. Additional benefits included en-
hanced adaptability to dynamic mission demands, along with increased system reconfiguration
options.

In addition, IMPACT technology was applied in the context of a rotorcraft through collaborations
with U.S. Army Aviation and Missile Command (AMCOM). Investigations into integration of Q-
RAM with hard real-time scheduling in avionics applications under DASADA led to interest in
this technology by the U.S. Army AMCOM. This led to the invitation to join a team to propose a
large-scale DASADA II experiment centered on application of DASADA technologies to the Si-
korsky Black Hawk helicopter.

 The SEI Contribution

This research was conducted in collaboration with the Carnegie Mellon faculty and Lockheed
Martin Aeronautics Co. All members of the team made contributions to the IMPACT project.
Since all results are those of the full team, it is not possible to isolate the specific contributions
made by the SEI.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 53
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 References

[Hansen 2004] Hansen, J.; Ghosh, S., Rajkumar, R.; and & Lehoczky, J. “Resource Management
of Highly Configurable Tasks,” 116. Proceedings of the 18th International Parallel and Distrib-
uted Processing Symposium, April 26-30 2004. IEEE, 2004.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1303070&tag=1

[Lehoczky 1996] Lehoczky, John P. “Real-Time Queueing Theory,” 186. Proceedings of the
IEEE Real-Time Systems Symposium. Washington, DC, December 4-6, 1996. IEEE, 1996.
dl.acm.org/citation.cfm?id=828944

[Mandak 2001] Mandak, Wayne S. & Stowell, Charles. A Dynamic Assembly for System Adapta-
bility, Dependability and Assurance (DASADA) Project Analysis. Naval Postgraduate School,
2001. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA393486

[Lehoczky 1996] Lehoczky, John P. “Real-Time Queueing Theory.” Proceedings of the IEEE
Real-Time Systems Symposium. Washington, DC, December 4-6, 1996. IEEE, 1996.
dl.acm.org/citation.cfm?id=828944

[Rajkumar 1997] Rajkumar, R.; Lee, C., & Lehoczky, J., & Siewiorek, D. “A Resource Alloca-
tion Model for QoS Management,” 298-307. Proceedings of the IEEE Real-Time Systems Sympo-
sium. San Francisco, CA, December 3-5, 1997. IEEE, 1997. http://www.cs.cmu.edu/afs/cs/pro-
ject/rtmach/public/papers/qos.ps

[Saewong 2002] Saewong, S.; Rajkumar, R.; Lehoczky, J. P.; & Klein, M. H. “Analysis of Hierar-
chical Fixed-Priority Scheduling,” 173-181. Proceedings of Euromicro Conference on Real-Time
Systems. Vienna, Austria, June 19-21, 2002. IEEE, 2002.
http://www.computer.org/csdl/proceedings/ecrts/2002/1665/00/16650173-abs.html

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1303070&tag=1
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA393486
http://www.cs.cmu.edu/afs/cs/pro-ject/rtmach/public/papers/qos.ps
http://www.cs.cmu.edu/afs/cs/pro-ject/rtmach/public/papers/qos.ps

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 54
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Architecting Software-Reliant, Safety-Critical Systems with SAE
AADL

 The Challenge: Reducing Faults in Safety-Critical Defense Systems

Safety- and mission-critical systems, such as aircraft, motor vehicles, and communication sys-
tems, have become increasingly software reliant. The cost of developing such systems has in-
creased exponentially under the current practice of “build then test” and has become unafforda-
ble—reaching 10 billion dollars for the next-generation aircraft, with software comprising 70
percent or more of the total system cost [Redman 2010]. The results are major delays in system
delivery and unexpected system failures during operation. A major cost driver is the exponential
growth in software size and interaction complexity. This growth is due to the increasing role of
software as the integrator of system functionality and the use of a shared networked computer
hardware infrastructure. Studies show that for safety-critical software systems, 70 percent of
faults are introduced during requirements specification and architecture design; and 80 percent are
currently not caught until integration/acceptance testing and actual operation, with rework cost
factors of 110-1000x [AVSI 2010]. Many of the root causes are related to mismatched assump-
tions in the interaction between the software, the hardware, and the physical system [Feiler 2009].
Studies of this problem have recommended a paradigm shift toward an architecture-centric,
model-based practice of end-to-end assurance evidence through predictive analysis and formal
verification to complement testing [NRC 2007].

 A Solution: SAE Architecture Analysis & Design Language (AADL)

In the 1990s, DARPA-funded research in software architecture fostered the creation of a number
of architecture description languages (ADLs), one of them being MetaH, which was specifically
designed at the Honeywell Technology Center for embedded software systems and which sup-
ported RMA [Vestal 1993]. Its successful use on a missile guidance system at the U.S. Army Avi-
ation and Missile Research Development and Engineering Center (AMRDEC) Software Engi-
neering Directorate (SED) and several other pilot projects led AMRDEC SED, in 1999, to kick
off and chair a standardization effort through the SAE AS-2C Architecture Description Language
Committee in the Avionics Systems Division of SAE International. Under the technical leadership
of the SEI, the AADL standard was approved by 23 voting member organizations and published
in November 2004; it was revised in January 2009 based on feedback from the user community
[SAE AADL 2009]. In June 2006, a set of Annex standards was published to support various
forms of hazard, reliability, and fault-impact analysis. The Annex included the AADL Meta
model and XMI interchange format, and the error model extension to AADL. In January 2011, a
second set of Annex standards was published, consisting of a Behavior Annex, a Data Modeling
Annex, and an ARINC653. With the release of the standard, the SEI provided an Eclipse-based
open source implementation of a tool environment for AADL called OSATE to encourage pilot
projects.

SAE AADL was specifically designed to support modeling and analysis of large-scale embedded
software system architectures in terms of an application runtime architecture bound to a computer
platform architecture and interacting with a physical system in which it is embedded. The archi-
tecture is expressed through concepts with well-defined semantics, such as periodic and aperiodic
tasks with sampled and queued communication operating as a partitioned system on synchronous

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 55
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

or asynchronous networked computer hardware. The annotated architecture model supports analy-
sis of functional and nonfunctional properties, including schedulability, safety, and reliability, as
well as code generation of runtime executives integrated with application components. Derivation
of different analytical models from the annotated architecture model assures consistency of analy-
sis results. The ability to model and analyze the architecture early and throughout the develop-
ment at increasing levels of fidelity leads to an incremental approach of end-to-end system valida-
tion and verification.

 The Consequence: Architecture-Centric Engineering Beyond
Documentation

Several industry initiatives initiated pilot projects as soon as the AADL standard was published.
The first industrial initiative using AADL as a core technology was the ASSERT project, led by
the European Space Agency in cooperation with 29 partners, from 2004-2007. The initiative de-
veloped a tool chain for the model-based analysis and auto-generation of satellite systems from
these reference architecture models and applied it to two families of satellite systems.

In 2005, a five-year industry initiative of 28 partners, led by Airbus and called TOPCASED, de-
veloped an industrial open source tool infrastructure for model-based engineering of embedded
systems, with OSATE as part of the tool suite (http://www.topcased.org/). In 2006, the three-year
ITEA SPICES initiative of 15 research and industrial partners began to develop a model-based en-
gineering method that integrates modeling in CORBA Component Model (CCM) and AADL for
analysis and auto-generation into SystemC.

From 2008-2011, the COMPASS Project (http://compass.informatik.rwth-aachen.de/), an interna-
tional research project funded by the European Space Agency, developed a theoretical and techno-
logical basis and approach for the system-software co-engineering. This co-engineering approach
focused on a coherent set of specification and analysis techniques evaluating system-level correct-
ness, safety, dependability, and performability of on-board computer-based aerospace systems.
These techniques have significantly improved the reliability of modern and future space missions.

Since 2008, under the umbrella of the Aerospace Vehicle Systems Institute (AVSI)—a consor-
tium of aerospace companies, including Boeing, Lockheed Martin, Airbus, Embraer, and a num-
ber of suppliers, including BAE Systems, Rockwell Collins, Honeywell, GE Aviation, as well as
the FAA, NASA, and the DoD—started the multi-phase System Architecture Virtual Integration
(SAVI) initiative to establish a architecture-centric, model-based “integrate then build” practice
throughout the lifecycle. SAVI uses a multi-notation model repository approach that assures
model consistency and interchange based on industry standards without forcing participants into
the same tool set. For the proof-of-concept phase, AADL and OSATE were chosen as key tech-
nologies for a case study to (1) analyze multiple quality attribute dimensions at several levels of
fidelity on a multi-tier aircraft model, and to (2) illustrate the ability to support integrator/supplier
interactions through architecture model interchange via a model repository [Redman 2010]. SAVI
is in the process of performing shadow projects within member companies and establishing buy-in
from commercial tool venders into the SAVI approach.

http://www.topcased.org/
http://compass.informatik.rwth-aachen.de/

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 56
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 The SEI Contribution

As technical lead of the SAE AADL standard, the SEI integrated several research technologies
into the AADL standard, making it an extensible, semantically well-defined, and consistent stand-
ard suite. Through strong participation and feedback of potential users of AADL from the avion-
ics and space industries, features have been included in the AADL standard to accommodate ap-
plication to large-scale systems. Through the creation of OSATE, the SEI has fostered pilot
applications of AADL in a range of industrial pilot projects. It also has fostered the use of AADL
and the OSATE toolset as a technology transition platform, as evidenced by the integration of a
number of formal analytical frameworks with AADL (https://wiki.sei.cmu.edu/aadl).

The SEI has created presentation and training materials for architecture-centric, model-based en-
gineering with AADL, applied AADL in a number of customer pilot projects, developed the Vir-
tual Upgrade Validation method to investigate known root cause problem areas in embedded soft-
ware systems, and used AADL in combination with other SEI architecture-centric methods.

The SEI continues to work with the aerospace industry on the SAVI initiative and the transition of
this model-based, architecture-centric practice into military programs.

 References

[AVSI Feiler 2010] Feiler P.; Wrage L.; & Hansson J. “Toward Model-Based Embedded System
Validation through Virtual Integration.” DoD Data Analysis Center for Software (DACS). Jour-
nal of Software Technology (January 2010).

[Feiler 2009] Feiler, Peter H. “Challenges in Validating Safety-Critical Embedded Systems.” Pro-
ceedings of SAE International AeroTech Congress, Seattle, WA, November 10-12, 2009.

[NRC Jackson 2007] Jackson, Daniel, ed. Software for Dependable Systems: Sufficient Evidence?
Committee on Certifiably Dependable Software Systems, National Research Council. National
Academic Press, 2007 (ISBN: 0-309-10857-8).

[Redman 2010] Redman, David; Ward, Donald; Chilenski, John; & Pollari, Greg. “Virtual Inte-
gration for Improved System Design.” Proceedings of The First Analytic Virtual Integration of
Cyber-Physical Systems Workshop in conjunction with the Real-Time Systems Symposium
(RTSS 2010), San Diego, CA, November 30-December 3, 2010.

[SAE AADL 2009] Society of Automotive Engineers (SAE) Avionics Systems Division (ASD)
AS-2C Subcommittee. Avionics Architecture Description Language Standard. SAE Documents
AS 5506A in January 2009, AS 5506/1 in June 2006, and AS 5506/2 in January 2011.
http://www.sae.org.

[SEI News 2009] Software Engineering Institute. “Creating a Framework for Reliability Valida-
tion” (SEI News story). November 24, 2009. http://www.sei.cmu.edu/newsitems/am-
rdec_roadmap.cfm

[Vestal 1993] Vestal, S. & Binns, P. “Scheduling and Communication in MetaH,” 194-200. Pro-
ceedings of the Real-Time Systems Symposium. RSTS, Durham, NC, December 1-3, 1993. IEEE,
1993.

https://wiki.sei.cmu.edu/aadl
http://www.sae.org
http://www.sei.cmu.edu/newsitems/am-rdec_roadmap.cfm
http://www.sei.cmu.edu/newsitems/am-rdec_roadmap.cfm

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 57
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3 Education and Training

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 58
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 59
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 4: Education and Training Timeline

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 60
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Introduction to Education and Training

A major factor in the ability of the Department of Defense to acquire and maintain software-inten-
sive systems is the availability of properly educated software engineers, not just in the DoD but in
the supporting industry. Likewise, a major component of technology transition is the availability
of training for practicing engineers and the availability of training materials for use by third-party
training organizations.

The DoD recognized these needs and included the following in the Software Engineering Insti-
tute’s initial contract: “The SEI shall develop and conduct courses and seminars with respect to
the evolving state of the art and practice in software engineering for mission-critical computer
systems as well as the results of its activities in technology transition. It shall also influence soft-
ware engineering curricula development throughout the education community” [DoD 1984].

Part of the motivation for this charge to influence curricula development was the recognition that
there was no widely accepted curriculum for preparing students for a career in software engineer-
ing. There were only two university programs offering a Master of Software Engineering (MSE)
degree and a few scattered university software engineering courses, but most universities did not
even offer such courses and few faculty were prepared to teach them. Several companies, such as
IBM with its Software Engineering Institute, conducted their own training programs; but that
training was specifically for internal use.

A strong factor for the government’s selection of Carnegie Mellon University for the operation of
the SEI was its established capability and reputation for engineering and computer science educa-
tion. There was, and still is, recognition in the DoD that it is not possible to properly educate soft-
ware engineers and improve the state of the practice without a strong education and technology
transition capability.

As a federally funded research and development center and as an objective broker of information,
the SEI develops methodologies and training that are neither vendor specific nor vendor biased.
SEI training is driven by the needs of the government and supporting industry, independent of
commercial needs or profit motives.

 Academic Curricula

Charged with the mission to influence software engineering curriculum development throughout
the education community, the SEI recruited a software educator to lead the effort. Recognizing
that the effort would be successful only if it involved a broad segment of the academic commu-
nity, the SEI initiated a series of workshops [Gibbs 1989], inviting educators and practicing engi-
neers to develop “curriculum modules.” This led to the model curriculum for a Master of Soft-
ware Engineering (MSE) degree [Gibbs 1990], which is the basis for MSE programs at many
universities. It is also the model for other curricula developed much later, such as the Graduate
Software Engineering Curriculum (GswE2009) developed by the Systems Engineering Research
Center (SERC) in 2009.

Similar to its work in other areas, the SEI engaged the academic community in creating the mate-
rials. The SEI has leveraged and amplified technology transition with government and industry by

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-MSE%20Curriculum%20131011.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-MSE%20Curriculum%20131011.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 61
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

making materials available to allow other organizations to teach material it has developed. For in-
stance, the Air Force Institute for Technology (AFIT) sent six officers from its faculty to the SEI
as resident affiliates to adapt the SEI MSE program. AFIT then offered software engineering edu-
cation as part of its continuing education program.

As the number of MSE programs began to rise, some universities incorporated material from the
curriculum modules in undergraduate courses. Although initially software engineering was
thought too advanced for an undergraduate curriculum, as the MSE programs matured, demand
for an undergraduate curriculum began to build. The SEI was asked to lead development of an un-
dergraduate curriculum in software engineering. The SEI engaged the stakeholders through the
Association for Computing (ACM) and the Computer Society of the Institute of Electrical and
Electronics Engineers (IEEE-CS) in joint efforts to develop curriculum guidelines for undergradu-
ate programs in computing: computer engineering, computer science, information systems, infor-
mation technology, and software engineering. The Accreditation Board for Engineering and Tech-
nology (ABET) has since established Software Engineering Program Criteria and, as of 2012,
accredited 27 programs.

The Working Group on Software Engineering Education and Training (WGSEET) was formed in
1995. The WGSEET was an ad hoc group of approximately 80 international professionals from
academia, industry, and government, led by the SEI’s former education director. The WGSEET
engaged in an extensive set of activities in support of undergraduate education. It developed guid-
ance and support for the development of undergraduate computing curricula to support the educa-
tion of software engineering professionals [Bagert 1999]; formulated ideas and issues related to
the design and implementation of a curriculum for the introductory part of a BS degree in soft-
ware engineering [Hilburn 2003]; interacted with the ACM and IEEE-CS; provided support for
the development of an undergraduate software engineering curriculum model; and participated in
numerous workshops and panels at the Conference on Software Engineering Education and Train-
ing (CSEET).

Based on the SEI’s contribution to curricula development and its expertise in software security,
the U.S. Department of Homeland Security (DHS) sponsored the SEI to build a model curriculum
for software assurance education and define strategies to implement it. Following an approach
similar to previous curriculum development efforts, the SEI led development of a Software Assur-
ance Curriculum for Colleges and Universities intended for graduate education leading to a mas-
ter’s degree [Mead 2010a]. In 2011 the curriculum was recognized by the IEEE and the ACM
professional societies as a model curriculum for a master’s degree program in software assurance,
a significant achievement. The curriculum work was subsequently extended to address the educa-
tional needs at the bachelor and associate degree levels [Mead 2010b] drawing on the body of
knowledge defined in the master’s curriculum. As of 2012, software assurance courses were being
offered at several universities, including the U.S. Air Force Academy. In 2013, the SEI added
online, on-demand software assurance training for executives.

The National Guard asked the SEI to develop a curriculum for survivability and information as-
surance education for systems administrators appropriate for the community college level. The re-
sulting four-course curriculum and capstone project enabled the National Guard to encourage lo-
cal community colleges to offer this program for National Guard systems administrators and also

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 62
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

to the colleges’ broader student population. As a result, the National Guard gained highly quali-
fied systems administrators who could address the survivability and information assurance of their
systems, and additional well-qualified system administrators entered the workforce. The materials
were made available online and had widespread influence. For example, as of 2014 access to the
faculty version of the curriculum was granted to 369 qualified faculty members representing 239
colleges and universities in 43 U.S. states, the District of Columbia, and one Canadian province.

 Curricula Transition

The SEI approach to curriculum development by engaging the academic community provided a
natural mechanism for transition. In addition, the SEI engaged other established mechanisms for
transition. Faculty development workshops were conducted in conjunction with a Conference on
Software Engineering Education. In a tutorial format, the SEI provided materials and preparation
to faculty members planning to teach software engineering and continued refinement of the model
curriculum. Sponsorship of the conference was eventually transferred to the IEEE, and continues
today as the IEEE Conference on Software Engineering Education and Training. The CSEE led to
the first electronic newsletter for software engineering educators, FASE (Forum for Advancing
Software Engineering Education). The Working Group on Software Engineering Education and
Training was also an outgrowth of the CSEET. The working group met twice yearly between
1995 and 2000, producing a number of education reports and other artifacts.

Another outgrowth of the curriculum project was the development of curriculum modules and ed-
ucational materials, which helped to transition the MSE curriculum and support faculty members
who wished to offer software engineering course offerings. This mentoring relationship helped to
transition the MSE curriculum and establish many of the software engineering degree programs
that exist today. More than 50 graduate MSE programs have been created; they produced more
than 700 graduates in 2004 alone [Ardis 2005].

Feedback from the university community suggested that although the model curriculum and sup-
porting materials were helpful, individual colleges and universities would be more motivated to
begin their own programs if a university of CMU’s stature were to do so as well. The SEI re-
sponded by teaming with the CMU School of Computer Science (SCS) to offer an MSE housed at
the SEI, with the degree being granted by SCS. A unique characteristic of the program was (and is
today) a design studio modeled after the design studios used in architecture. Under the guidance
of a senior faculty member, students undertake realistic design projects offered by industry and
government organizations. The CMU Master of Software Engineering Program [Gibbs 1990] con-
tinued as a joint program for several years, graduating professional engineers who were highly re-
cruited by industry. The MSE program was eventually transferred to SCS where it continues to-
day. SEI staff members continue to be involved, serving as studio mentors and occasionally
teaching courses.

When the SEI and SCS joined to create the MSE program, the SEI recognized the opportunity to
increase its support to other universities by videotaping the CMU courses and offering them to
other colleges and universities. The SEI recruited the retiring manager of the IBM Software Engi-
neering Institute. Recognizing that it was neither practical for SEI people to travel to other univer-
sities nor for university faculty from other universities to spend significant time at the SEI, the
SEI embarked on the construction of a video studio. Courses were taped live with CMU students
in the classroom and provided to other universities. Some universities showed the videos as a

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/7-CMU%20MSE%20Program%20131011.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 63
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

course offering, while at other universities, faculty reviewed the videos and then offered similar,
but tailored, lectures to their students.

A series of train-the-trainer continuing education courses was developed in conjunction with the
video studio. These courses mirrored the academic offerings on topics such as software project
management and software requirements engineering, among others. Instructors who attended
these courses were trained in the complete set of materials, and received a set of videotapes,
slides, lecture notes, and other supporting materials for delivery of the continuing education offer-
ings.

The SEI also recognized that successful development of software engineering in the academic
community required definitive books from which faculty could become familiar with evolving
thought in the field. The SEI, therefore, teamed with Addison-Wesley to publish the SEI Series in
Software Engineering. Today the series comprises more than 30 volumes on a wide range of soft-
ware engineering topics. Many of the books in the series are authored by members of the SEI
staff.

The formal education component was transitioned over time to the academic infrastructure. Col-
leges and universities were offering degrees based on accredited curricula. The workshops and
conferences at which professors could update their knowledge were transitioned to the IEEE
[Mead 2009]. As a consequence, although the SEI remains active in software engineering educa-
tion, it is no longer a major focus for the SEI. It is, however, a major success of its original charter
that software engineering and related programs are so vibrant in the academic infrastructure.

 Professional Education and Training

With the success of the academic programs, a demand for executive education began to surface.
Defense industry and DoD executives whose expertise was in areas other than software began to
request executive education that would enable them to understand the issues associated with man-
aging software-intensive systems. The SEI recruited a retired industry vice president and a retired
flag officer to develop an executive education program. The executive education offerings were
extremely popular with senior executives, and the Air Force adapted the material for a program
called Bold Stroke for Officers at the rank of 0-6 and above. Recognizing the role software played
in Desert Storm, the Army asked the SEI to offer a version of its executive education program to
Army flag officers and Senior Executive Service (SES) civilians; the program is offered annually
to the Army senior leadership.

The SEI has provided a broad array of professional training. In addition to the courses offered by
SEI staff, the SEI has established a partner program that includes teaching SEI professional edu-
cation courses. Approximately 400 partner organizations are authorized to teach SEI courses. In
2010, partners taught 15,000 students, while the SEI taught 4,000 students—highlighting the
value of leveraging SEI education and training through collaborations and partnerships.

The SEI also offers executive education programs for commercial organizations. The SEI devel-
oped and hosted “Technovation,” a weeklong executive training lab specifically designed to sup-
port General Electric’s (GE’s) Experienced Information Management Program (EIMP). Techno-
vation participants represented a range of GE divisions and information technology roles. The
executive training was delivered by experts from the SEI and guest lecturers from Carnegie

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/8-Exec%20Ed%20131011.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 64
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Mellon’s faculty in areas such as robotics, interdisciplinary collaboration, team development, soft-
ware architecture and product line development, service-oriented architecture, data mining, and
cybersecurity [SEI 2012].

 Evolution of Instructional Delivery Based on Technology Advancements

The delivery of SEI education and training has evolved, taking advantage of advances in technol-
ogy as they occur. The SEI can now deliver training to warfighters as well as others across the
globe 24/7, and students can learn at their own pace and study at home, work, or on the road.

This evolution of training delivery methods has enabled the SEI and the government to provide
timely training at an affordable cost. The SEI video studio was used to record lectures by leaders
in the software engineering community to provide insight into important developments, resulting
in a standalone video series. The SEI has added to traditional instructor-led classroom training by
taking advantage of synchronous distance training such as broadcasting virtual “live” online train-
ing, and, later, asynchronous web-based, self-paced e-learning. Recently, the SEI has been pro-
ducing podcasts and webinars to keep pace with the latest evolution from e-learning to m-learn-
ing—on-the-go mobile learning.

The SEI found that its customers’ unique distance training needs required new technology for
cyber workforce development. The CERT Virtual Training Environment (VTE) was developed to
amplify the security training and best practices delivered through classroom training. Because of
its rich media instruction and hands-on training labs, VTE allowed users to access high-quality
training materials in information security, computer forensics, and incident response anywhere in
the world with only a web browser and an internet connection.

The CERT Exercise Network (XNET) solved the problem of preparing staff to train under realis-
tic conditions, using scenarios that can be difficult and expensive to create and administer. XNET
allowed organizations to create customized, realistic, interactive simulations on an isolated net-
work. Through a web-based interface, participants across multiple locations could work together
to analyze and respond to the latest threats. Instructors could easily monitor, control, and evaluate
participants’ activities to identify problem areas. XNET was used in multiple cyber defense exer-
cises conducted by the U.S. government.

Features of VTE and XNET are included in STEPfwd, the most recent advance in technology for
workforce development. Like its predecessor, STEPfwd is being used in military cyber defense
exercises.

 References

[Ardis 2005] Ardis, Mark. “An Incomplete History of Master of Software Engineering Programs
in the United States.” Presentation at the 15th Reunion of CMU MSE Program, July 2005.
http://personal.stevens.edu/~mardis/papers/MSEHistory.pdf

[Bagert 1999] Bagert, D.; Hilburn, T.; Hislop, G.; Lutz, M.; & McCracken, M. “Guidance for the
Development of Software Engineering Education Programs.” The Journal of Systems and Soft-
ware 49 (1999): 163-169.

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/11-%20Cyber%20Workforce%20131011.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/11-%20Cyber%20Workforce%20131011.docx
http://xnet.cert.org/
http://personal.stevens.edu/~mardis/papers/MSEHistory.pdf

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 65
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[DoD 1984] Statement of Work for Implementation and Initial Operations of the DoD Software
Engineering Institute, Section J Attachment 1 F19628-84-R-0070, May 30, 1984. Not publicly
available.

[Gibbs 1989] Gibbs, N. E. “The SEI Education Program: The Challenge Of Teaching Future Soft-
ware Engineers.” Communications of the ACM 32, 5 (May 1989): 594–605.

[Gibbs 1990] Gibbs, Norman E.; Ardis, Mark A.; Habermann, A. Nico; & Tomayko, James E.
“The Carnegie Mellon University Master of Software Engineering Degree Program.” 152-154.
Proceedings of the Software Engineering Education Conference, Pittsburgh, PA, April 2-3, 1990.
Published as Springer Lecture Notes in Computer Science 423, 1990.

[Hilburn 2003] Hilburn, T.; Duley, D.; Hislop, G.; & Sobel, A. “Engineering an Introductory
Software Engineering Curriculum,” 99–106. Proceedings of the Sixteenth Conference on Software
Engineering Education and Training. CSEET, Madrid, Spain, March 20-22, 2003. IEEE, 2003.

[Mead 2009] Mead, N. R. “Software Engineering Education: How Far We’ve Come and How Far
We Have to Go.” Journal of Systems and Software (2009), doi:10.1016/j.jss2008.12.038.

[Mead 2010a] Mead, Nancy; Allen, Julia; Ardis, Mark; Hilburn, Thomas; Kornecki, Andrew; Lin-
ger, Richard; & McDonald, James. Software Assurance Curriculum Project Volume I: Master of
Software Assurance Reference Curriculum (CMU/SEI-2010-TR-005). Software Engineering In-
stitute, Carnegie Mellon University, 2010. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=9415

[Mead 2010b] Mead, Nancy; Hilburn, Thomas; & Linger, Richard. Software Assurance Curricu-
lum Project Volume II: Undergraduate Course Outlines (CMU/SEI-2010-TR-019). Software En-
gineering Institute, Carnegie Mellon University, 2010. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=9543

[SEI 2012] “SEI Bolsters GE Professional Development Curriculum with ‘Technovation’ Execu-
tive Training Lab.” (Press Release) Software Engineering Institute, Carnegie Mellon University,
2012. http://www.sei.cmu.edu/newsitems/technovation-2011.cfm

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9415
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9415
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9543
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9543

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 66
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Model Curriculum for Master of Software Engineering Degree

 The Challenge: The Need for a Standard Software Engineering Curriculum

One of the outcomes of the NATO workshop [Naur 1969] that coined the term “software engi-
neering” was an interest in developing new educational programs, especially for working profes-
sionals. However, new programs were slow to appear. One problem was the lack of a standard
curriculum.

In the late 1970s, the IEEE Computer Society formed a Subcommittee on Model Curricula in
Software Engineering [Fairley 1978]. This effort was influenced by earlier work on software engi-
neering education that focused on the skills needed by practicing software engineers [Freeman
1976]. Unfortunately, the IEEE Computer Society never officially endorsed the proposed curricu-
lum from this committee. However, committee members helped start Master of Software Engi-
neering (MSE) programs at Seattle University and Wang Institute of Graduate Studies using the
material from the committee’s report [Ardis 1987].

 A Solution: Creation of the SEI Master of Software Engineering Curriculum
Guidelines

In 1987, the SEI published some guidelines for graduate programs [Ford 1987] that specified im-
portant topics to include in an MSE curriculum. It also provided advice on educational objectives,
prerequisites, electives, and needed resources. That report served as a specification for graduate
software engineering programs, but it did not propose any specific courses or suggest how they
might be taught.

In the winter of 1988, the SEI held a workshop of leading software engineering educators to de-
sign a recommended curriculum for an MSE degree. They assumed that such a program would
consist of about 10 to 12 courses: six or seven required courses, another three or four electives,
with the remainder devoted to project work.

The members of the workshop first estimated the size of each of the 20 topics from the specifica-
tion, then partitioned them into six core courses:

1. Software Systems Engineering

2. Specification of Software Systems

3. Principles and Applications of Software Design

4. Software Generation and Maintenance

5. Software Verification and Validation

6. Software Project Management

Preliminary descriptions of each of the courses were written during the workshop. After the work-
shop, a subset of the participants prepared detailed descriptions of the core courses. For each
course, they created a catalog description, a statement of educational objectives, an outline of top-
ics, and other supporting material. The student-expected outcomes and required classroom times
were also provided for each major topic. All the core courses were independent, with none being a
prerequisite for any of the others.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 67
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The curriculum guidelines also suggested that about 20-40 percent of an MSE program should
consist of electives, and another 30 percent should be project work. Rather than recommend any
particular project course design, the guidelines described alternatives used by some of the existing
software engineering programs.

Finally, the curriculum guidelines recommended prerequisite knowledge needed by students en-
tering MSE programs, consisting of material in discrete mathematics and computer science topics.

The SEI curriculum recommendations were published at the annual Conference on Software En-
gineering Education and Training [Ardis 1989], a series started by the SEI that continues today
with its own independent steering committee and sponsorship. Some additional material was
added to the guidelines in later years, primarily summaries of the courses as they were taught in
the Carnegie Mellon MSE program. In 2009, an update to the guidelines [Pyster 2009] was pub-
lished by an international project. Those guidelines have been adopted by the ACM and the IEEE
Computer Society as part of their computing curricula series.

 The Consequence: New Academic Programs Established

After the SEI guidelines were published, several other schools created their own graduate soft-
ware engineering programs. In fact, the number of programs nearly doubled in the first three years
after the publication of the guidelines. Most of those programs followed the recommended guide-
lines.

Another outgrowth of the curriculum project was the development of curriculum modules and ed-
ucational materials that helped to transition the MSE curriculum and support faculty members
who wished to offer software engineering courses. This mentoring relationship helped to transi-
tion the MSE curriculum and to establish many of the software engineering degree programs that
exist today. More than 50 graduate master’s programs have been created; they produced more
than 700 graduates in 2004 alone [Ardis 2005].

 The SEI Contribution

The SEI education effort provided needed leadership during the early years of curriculum devel-
opment in software engineering education. In addition to publishing the first set of curriculum
guidelines, the SEI created many early educational resources, such as curriculum modules. These
were disseminated at the annual CSEET.

Similar to its work in other areas, the SEI engaged the academic community in creating the mate-
rials and leveraged and amplified technology transition with government and industry by making
materials available to allow other organizations to teach material it has developed. For instance,
the Air Force Institute for Technology (AFIT) sent six officers from its faculty to the SEI as resi-
dent affiliates to adapt the SEI MSE program. AFIT then offered software engineering education
as part of its continuing education program.

 References

[Ardis 1987] Ardis, Mark. “The Evolution of Wang Institute’s Master of Software Engineering
Program.” IEEE Transactions on Software Engineering 13, 11 (November 1987): 1149-1155.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 68
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[Ardis 1989] Ardis, M. & Ford, G. “SEI Report on Graduate Software Engineering Education.”
Proceedings of the 3rd SEI Conference on Software Engineering Education. CSEE, Pittsburgh,
PA, July 18-21, 1989. Published as Springer Lecture Notes in Computer Science 376, 1989.

[Ardis 2005] Ardis, Mark. “An Incomplete History of Master of Software Engineering Programs
in the United States.” Presentation at the 15th Reunion of CMU MSE Program, July 2005.
http://personal.stevens.edu/~mardis/papers/MSEHistory.pdf

[Fairley 1978] Fairley, R. E. “Toward Model Curricula in Software Engineering,” 77-79. Pro-
ceedings of the 9th SIGCSE Technical Symposium on Computer Science Education. Published in
ACM SIGCSE Bulletin 10, 3, (August 1978).

[Ford 1987] Ford, Gary; Gibbs, Norman; & Tomayko, James. Software Engineering Education:
An Interim Report from the Software Engineering Institute (CMU/SEI-87-TR-008). Software En-
gineering Institute, Carnegie Mellon University, 1987. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=10253

[Freeman 1976] Freeman, P.; Wasserman, A. I.; & Fairley, R. E. “Essential Elements of Software
Engineering Education,” 116-122. Proceedings of the 2nd International Conference on Software
Engineering, October 1976.

[Naur 1969] Naur P. & Randell, B., eds. Software Engineering: Report of a Conference Spon-
sored by the NATO Science Committee. Garmisch, Germany, October 7-11, 1968. Scientific Af-
fairs Division, NATO, 1969.

[Pyster 2009] Pyster, A., ed. Graduate Software Engineering 2009 (GSwE2009) Curriculum
Guidelines for Graduate Degree Programs in Software Engineering. Integrated Software & Sys-
tems Engineering Curriculum Project, Stevens Institute of Technology, 2009.

http://personal.stevens.edu/~mardis/papers/MSEHistory.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10253
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10253

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 69
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Undergraduate Software Engineering Curriculum

 The Challenge: Lack of Curriculum Guidance for Undergraduate Software
Engineering Education

As software engineering became prominent in the 1970s and 1980s, both as a discipline and as a
profession, there was little direction or guidance on how to prepare for a career as a software engi-
neer. Through the 1970s, the emphasis in software development was on programming and testing,
with little attention to architecture, quality control, pro-
cess, and the discipline expected in a major engineering
activity.

The early SEI education effort focused its work on de-
veloping support for a professional master’s degree in
software engineering [Gibbs 1989]. It soon became clear
that the curriculum modules aimed at the master’s level
could be adapted to support undergraduate-level work.

By the 1990s, the educational community was accepting
the idea of software engineering as a separate discipline.
In its study and analysis of software engineering’s ma-
turity as an engineering discipline, the SEI found that in
the U.S. there were approximately 20 universities offer-
ing a master’s degree in software engineering, but there
were no bachelor’s degree programs in software engi-
neering [Ford 1996]. (In 1996, Rochester Institute of
Technology established the first Bachelor of Science in
Software Engineering (BSSE) degree program in the
United States.) Undergraduate computer science pro-
grams typically contained little or no software engineer-
ing material beyond the unit or module development
level; there was no meaningful coverage of software re-
quirements, architecture, quality, process, or manage-
ment topics. In addition, the SEI observed that there was
a great variety of educational backgrounds among prac-
ticing software engineers, few with formal preparation
in software engineering; ABET had not established pro-
gram criteria for software engineering; and there was no
published code of ethics for software engineering. The
SEI concluded that initial professional education of software engineers was in the ad hoc stage.

 A Solution: Development and Dissemination of Curriculum Guidance

The SEI approached the curriculum challenge as it has many others—namely, engage the stake-
holders in an effort to meet the challenge. For the past 20 years, the ACM and the IEEE Computer
Society have engaged in joint efforts to develop curriculum guidelines for undergraduate pro-
grams in computing—computer engineering, computer science, information systems, information
technology, and software engineering. Although the 1991 ACM/IEEE-CS computing curriculum

The View from Others

Drexel University has long been a
leader in computing education.
The University created a master’s
degree in software engineering in
1997 and followed that effort with
a bachelor’s degree in software
engineering in 2001. Both of these
degrees generated considerable
discussion and some strong differ-
ences of opinion among the fac-
ulty. The role of the SEI in estab-
lishing the importance of software
engineering education was very
useful in advancing the effort to
create degree programs. In addi-
tion, participation in the WGSEET,
and availability of all the work
products already mentioned pro-
vided an excellent vehicle for
knowledge sharing to ensure that
the Drexel degree programs were
in synch with the evolving con-
cepts of software engineering edu-
cation.

– Dr. Gregory W. Hislop,
Professor, Drexel University

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 70
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

did not list software engineering as a fundamental subject area, the 2001 version identified soft-
ware engineering as one of the 14 core areas in the computer science body of knowledge [ACM
2001].

The Working Group on Software Engineering Education and Training was formed in 1995 with
the mission of improving the state of software engineering education and training. The WGSEET
was an ad hoc group of approximately 80 interna-
tional professionals from academia, industry, and
government, which was led by the individual who
was the SEI education director from 1991 to 1994
[Bagert 2008]. The WGSEET engaged in an extensive
set of activities in support of undergraduate education.
It developed guidance and support for the develop-
ment of undergraduate computing curricula for the
education of software engineering professionals
[Bagert 1999a]; formulated ideas and issues related to
the design and implementation of a curriculum for the
introductory part of a B.S. degree in software engi-
neering [Hilburn 2003]; interacted with the ACM and
IEEE-CS; provided support for the development of an
undergraduate software engineering curriculum
model; and participated in numerous workshops and
panels at CSEET conferences.

 The Consequence: Undergraduate
Software Engineering Programs
Established

In the past decade, the work of the WGSEET, the
ACM and IEEE-CS, ABET, and the SEI have had a
significant influence on the quantity and quality of
undergraduate software education. ABET established
a Software Engineering Program Criteria and have
since accredited 27 programs under these criteria. The
ACM and IEEE-CS developed the Curriculum Guide-
lines for Undergraduate Degree Programs in Soft-
ware Engineering (SE 2004) [ACM 2004], which
provides curriculum development and pedagogy
guidelines, a curriculum body of knowledge, example
course descriptions, and curriculum architectures. The
work of the WGSEET was a major influence on SE
2004, and several members of the WGSEET were
part of the ACM/IEEE-CS task force. Other influ-
ences were the Guide to the Software Engineering Body of Knowledge [Bourque 2004] and an
earlier SEI technical report on the software engineering body of knowledge [Hilburn 1999]. The
ACM and IEEE-CS developed a Software Engineering Code of Ethics and Professional Practice
[ACM 1999], which has influenced both curriculum development and accreditation planning. The

The View from Others

The consequence of the SEI’s work
in education—model curricula, de-
gree programs, accreditation crite-
ria, and a code of ethics—is really
impressive.

– Dr. Robert L. Cannon,
Distinguished Professor
Emeritus of Computer
Science, University of South
Carolina

Early in my career, I became in-
volved in the SEI’s Working Group
on Software Engineering Education
and Training via a conference
presentation. The working group
supported the birth and initial mat-
uration of the undergraduate soft-
ware engineering programs offered
in the U.S. by providing a venue for
software engineering educators to
collaborate to provide needed
structure and organization to the
BSSE degree. The working group
has also raised the visibility of soft-
ware engineering as a discipline
and the importance of SE education
via conference presentations and
publications.

– Dr. Heidi Ellis, Associate
Professor, Western New
England University

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 71
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

SEI adapted the Personal Software Process (PSP) and the Team Software Process (TSP) for aca-
demic use, and supported delivery of a series of summer workshops for faculty that taught faculty
PSP and TSP techniques and engaged them in software process curriculum design [Hilburn 2002].

Most recently, the SEI has managed a project for the Department of Homeland Security to im-
prove the state of software assurance practices by providing curriculum guidance in software as-
surance principles, methods, and practices (http://www.cert.org/mswa/).

 The SEI Contribution

The SEI was a key player in the advancement of undergraduate software engineering education.
The SEI and the WGSEET acted as software engineering education catalysts, providing forums
for communication about education issues and supporting and motivating development of course
modules, curriculum guidance, position papers, and technical reports [Bagert 1999b, Ford 1994,
1996, Hilburn 1999, Mead 2010, 2011, Shaw 2005]. While much of the work was accomplished
by the stakeholders, it was the SEI impetus and leadership that accelerated the activity.

 References

[ACM 1999] ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional
Practices. Software Engineering Code of Ethics and Professional Practice, Version 5.2. ACM,
1999. http://www.acm.org/serving/se/code.htm

[ACM 2001] ACM/IEEE-CS Joint Task Force on Computing Curricula. Computing Curricula
2001: Computer Science, Final Report, December 15, 2001. ACM, 2001.
http://www.acm.org/education/education/education/curric_vols/cc2001.pdf

[ACM 2004] ACM/IEEE-CS Joint Task Force on Computing Curricula, Software Engineering.
Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering. ACM,
2004. http://www.acm.org/education/curricula.html

[Bagert 1999a] Bagert, D.; Hilburn, B.; Hislop, G.; Lutz, M; & McCracken, M. “Guidance for the
Development of Software Engineering Education Programs.” The Journal of Systems and Soft-
ware 49, (1999): 163-169.

[Bagert 1999b] Bagert, Donald; Hilburn, Thomas; Hislop, Gregory; Lutz, Michael; McCracken,
Michael; & Mengel, Susan. Guidelines for Software Engineering Education Version 1.0
(CMU/SEI-99-TR-032). Software Engineering Institute, Carnegie Mellon University, 1999.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=13565

[Bagert 2008] Bagert, D. J.; Port, D. N.; & Saideian, H. “Software Engineering Education, Train-
ing, and Research: The Legacy of Nancy Mead,” 238-243. Proceedings of the 21st IEEE Confer-
ence on Software Engineering Education and Training, 2008 (CSEET ’08). April 14-17, 2008.
238-243 (doi: 10.1109/CSEET.2008.34).

[Bourque 2004] Bourque P. & Dupuis R., eds. Guide to the Software Engineering Body of
Knowledge. IEEE CS Press, 2004. http://www.swebok.org/

http://www.cert.org/mswa/
http://www.acm.org/serving/se/code.htm
http://www.acm.org/education/education/education/curric_vols/cc2001.pdf
http://www.acm.org/education/curricula.html
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=13565

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 72
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[Ford 1994] Ford, G. A Progress Report on Undergraduate Software Engineering Education
(CMU/SEI-94-TR-11). Software Engineering Institute, Carnegie Mellon University, 1999.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12183

[Ford 1996] Ford, G. & Gibbs, N. E. A Mature Profession of Software Engineering (CMU/SEI-
96-TR-004). Software Engineering Institute, Carnegie Mellon University, 1996. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=12515

[Gibbs 1989] Gibbs, N. E. “The SEI Education Program: The Challenge Of Teaching Future Soft-
ware Engineers.” Communications of the ACM 32, 5 (May 1989): 594-605.

[Hilburn 1999] Hilburn, Thomas; Hirmanpour, Iraj; Khajenoori, Soheil; Turner, Richard; &
Qasem, Abir. A Software Engineering Body of Knowledge Version 1.0 (CMU/SEI-99-TR-004).
Software Engineering Institute, Carnegie Mellon University, 1999. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?AssetID=13359

[Hilburn 2002] Hilburn T. & Humphrey, W. “Teaching Teams.” IEEE Software 19, 5 (September
2002): 72-77.

[Hilburn 2003] Hilburn, T.; Duley, D.; Hislop, G.; & Sobel, A. “Engineering an Introductory
Software Engineering Curriculum,” 99-106. Proceedings of the 16th Conference on Software En-
gineering Education and Training (CSEET). Madrid, Spain, March 20-22, 2003. IEEE, 2003.

[Mead 2010] Mead, Nancy; Hilburn, Thomas; & Linger, Richard. Software Assurance Curricu-
lum Project Volume II: Undergraduate Course Outlines (CMU/SEI-2010-TR-019). Software En-
gineering Institute, Carnegie Mellon University, 2010. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=9543

[Mead 2011] Mead, Nancy; Hawthorne, Elizabeth; & Ardis, Mark. Software Assurance Curricu-
lum Project Volume IV: Community College Education (CMU/SEI-2011-TR-017). Software En-
gineering Institute, Carnegie Mellon University, 2011. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=10009

[Shaw 2005] Shaw, M., ed. Software Engineering for the 21st Century: A Basis for Rethinking the
Curriculum (CMU-ISRI-05-108). Carnegie Mellon University, 2005.
http://www.cs.cmu.edu/~Compose/SEprinciples-pub-rev2.pdf

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12183
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=12515
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=12515
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=13359
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=13359
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9543
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9543
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10009
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10009

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 73
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Software Assurance Curriculum for Colleges and Universities

 The Challenge: Demand for Software Assurance Expertise

Software plays a critical and central role in our personal lives and in the workplace, but it often
has availability, reliability, safety, and security problems. The Bureau of Labor Statistics’ Occu-
pational Outlook Handbook 2010-2011 Edition [BLS 2011] highlights the need for software as-
surance expertise. It states,

Concerns over “cybersecurity” should result in the continued investment in software that
protects computer networks and electronic infrastructure. The expansion of this technology
over the next 10 years will lead to an increased need for software engineers to design and
develop secure applications and systems, and to integrate them into older systems.

Unfortunately, there are too few experienced professionals with the breadth and depth of software
assurance knowledge that is essential to meet today’s needs. In the future, the demand will greatly
exceed the supply of skilled engineers—unless action is taken now.

 A Solution: Educate Future Practitioners

DHS sponsored the SEI to build a model curriculum for software assurance education and define
strategies to implement it. DHS had already worked with the SEI on the Build Security In website
(https://buildsecurityin.us-cert.gov/) and recognized that the principle of building security in at the
start had to extend to the workforce. In response to the DHS request, the SEI developed a curricu-
lum model for a master of software assurance (MSwA) degree [Mead 2010a]. The SEI curriculum
developers surveyed industry executives to understand their needs and worked with the academic
community for contributions, refinement, and feedback on the curriculum. In particular, the SEI
collaborated with faculty from Embry-Riddle Aeronautical University, Monmouth University, and
Stevens Institute of Technology. Stevens was the first to implement a track corresponding to the
curriculum.

The curriculum presents a body of knowledge that faculty can use to create a master of software
assurance degree program, either as a stand-alone program or as a track in existing software engi-
neering and computer science programs. The SEI and its collaborators developed syllabi for all
nine courses [Mead 2011a], a bibliography of resources, and an overview seminar.10 The seminar
was first presented as a conference workshop [Mead 2010c]. The SEI also produced a podcast de-
scribing the curriculum [Mead 2010d]. In 2011, the curriculum was recognized by the IEEE and
the ACM professional societies as a model curriculum for a master’s degree program in software
assurance, a significant achievement.

10 All materials are available on the CERT website: http://www.cert.org/curricula/software-assurance-

curriculum.cfm.

https://buildsecurityin.us-cert.gov/
http://www.cert.org/curricula/software-assurance-curriculum.cfm
http://www.cert.org/curricula/software-assurance-curriculum.cfm

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 74
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The curriculum work was extended to address the educational needs at the bachelor and associate
degree levels, drawing on the body of knowledge defined in the master’s curriculum. The bache-
lor’s level program [Mead 2010b] defines seven courses
that could fit into another degree program, such as soft-
ware engineering or computer science. These courses
provide students with fundamental skills for either enter-
ing the field directly or continuing with graduate-level
studies. The associate’s degree program [Mead 2011b]
also provides fundamental skills students need for fur-
ther undergraduate-level work; those with prior under-
graduate technical degrees can become more specialized
in software assurance.

In 2013, the SEI developed on-demand software assur-
ance training for executives and a software assurance
competency model [Hilburn 2013]. The executive train-
ing includes slide sets and videos featuring experts from
government and academia. The competency model helps
organizations and individuals determine software assur-
ance competency across a range of knowledge areas and
includes a framework for adapting the model to an or-
ganization’s particular domain, culture, or structure.

 The Consequence: More Well-Qualified
Software Assurance Professionals

The SEI software assurance curriculum helps meet the
demand for professionals with a breadth and depth of
software assurance knowledge. SEI materials ease the
way for universities and colleges to implement software
assurance programs and tracks. As of fall 2012, software
assurance courses are in place at Carnegie Mellon Uni-
versity, Rochester Institute of Technology, Stevens In-
stitute of Technology, University of Detroit Mercy, Uni-
versity of Houston, and the U.S. Air Force Academy;
others are in progress. In addition, (ISC),2 a training or-
ganization, has mapped its courses to the SEI curricu-
lum.

Graduates of programs based on the SEI curriculum
bring to a hiring organization the skills to deal with the
security and quality of software systems in a compre-
hensive way. They can take responsibility for software
assurance at an organizational level, in both its business
and technical aspects. The graduates can apply assurance concepts to management, assurance as-
sessment, people, and processes; understand how system requirements and specifications meet
business needs; and assess software quality and security at a technical-design level and determine

The View from Others

In our recent comprehensive cur-
riculum review, we knew that we
needed to enhance the focus on
software quality assurance across
our computer science courses.
Most fortunately, we turned to the
experts. The leadership, expertise,
and resources provided by SEI
with their software assurance cur-
riculum hit right on target, im-
mensely improving our ability to
produce future Air Force officers
prepared to defend and securely
operate in cyberspace. We owe a
great thanks to SEI, DHS, and the
software assurance community
that they have formed and fos-
tered.

– Steven Hadfield, Associate
Professor and Curriculum
Chair, Department of
Computer Science, U.S. Air
Force Academy

These are terrific. They are a great
contribution to curricula guidance
generally and I am sure will be
widely welcomed. Moreover they
are particularly topical and rele-
vant and I hope computing educa-
tors will take note.

– Andrew McGettrick, Chair
of the ACM Education
Board and Council, and
Associate Editor of the
Computer Journal
[SEI 2013]

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 75
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

how they relate to business needs. Most importantly, they can serve as a focal point for integrating
assurance activities across the organization. They can perform almost any role in the organiza-
tions’ software development lifecycle, including requirements engineer, software architect, test
engineer, and project manager, or roles in software maintenance, operation, and acquisition.

The long-term goal of the SEI software assurance curriculum work is an increase in the reliability
and security of software. Acquirers in government and industry, as well as consumers, have
greater assurance that the software they buy will behave as expected.

 The SEI Contribution

Many colleges and universities had degree programs in areas such as software engineering, com-
puter science, and information security; but they lacked programs in software assurance. The SEI
MSwA curriculum is the first created specifically for software assurance. The unique contribu-
tions of the SEI software assurance curricula are that they include both services and software and
both acquisition and development. They also include business aspects, ensuring that graduates un-
derstand the relation of technology and business needs. The quality of the SEI work was recog-
nized by the IEEE Computer Society and the ACM. A press release by the organizations states
that this formal recognition signifies to the educational community that the MSwA reference cur-
riculum is suitable for creating graduate programs or tracks in software assurance [IEEE 2010].

 References

[BLS 2011] Bureau of Labor Statistics. Occupational Outlook Handbook, 2010-11 Edition. Bu-
reau of Labor Statistics, 2011. http://www.bls.gov/ooh

[Hilburn 2013] Hilburn, Thomas; Ardis, Mark; Johnson, Glenn; Kornecki, Andrew; & Mead,
Nancy. Software Assurance Competency Model (CMU/SEI-2013-TN-004). Software Engineering
Institute, Carnegie Mellon University, 2013. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=47953

[IEEE 2010] Institute of Electrical and Electronics Engineers. “Computer Society Recognizes
Master of Software Assurance Curriculum” (press release). December 8, 2010. http://www.com-
puter.org/portal/web/pressroom/20101213MSWA

[Mead 2010a] Mead, Nancy; Allen, Julia; Ardis, Mark; Hilburn, Thomas; Kornecki, Andrew; Lin-
ger, Richard; & McDonald, James. Software Assurance Curriculum Project Volume I: Master of
Software Assurance Reference Curriculum (CMU/SEI-2010-TR-005). Software Engineering In-
stitute, Carnegie Mellon University, 2010. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=9415

[Mead 2010b] Mead, Nancy; Hilburn, Thomas; & Linger, Richard. Software Assurance Curricu-
lum Project Volume II: Undergraduate Course Outlines (CMU/SEI-2010-TR-019). Software En-
gineering Institute, Carnegie Mellon University, 2010. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=9543

[Mead 2010c] Mead, Nancy & Ingalsbe, Jeff. “How to Get Started in Software Assurance Educa-
tion.” Conference on Software Engineering Education and Training (CSEET), Pittsburgh, PA,
March 8-12, 2010.

http://www.bls.gov/ooh
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=47953
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=47953
http://www.com-puter.org/portal/web/pressroom/20101213MSWA
http://www.com-puter.org/portal/web/pressroom/20101213MSWA
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9415
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9415
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9543
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9543

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 76
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[Mead 2010d] Mead, Nancy; Hilburn, Thomas; & Linger Richard. “Software Assurance: A Mas-
ter’s Level Curriculum” (podcast). Software Engineering Institute, Carnegie Mellon University,
2010. http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=34734

[Mead 2011a] Mead, Nancy; Allen, Julia; Ardis, Mark; Hilburn, Thomas; Kornecki, Andrew; &
Linger, Richard. Software Assurance Curriculum Project Volume III: Master of Software Assur-
ance Course Syllabi (CMU/SEI-2011-TR-013). Software Engineering Institute, Carnegie Mellon
University, 2011. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9981

[Mead 2011b] Mead, Nancy; Hawthorne, Elizabeth; & Ardis, Mark. Software Assurance Curricu-
lum Project Volume IV: Community College Education (CMU/SEI-2011-TR-017). Software En-
gineering Institute, Carnegie Mellon University, 2011. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=10009

[SEI 2013] Software Engineering Institute, 2012 Year in Review, Carnegie Mellon University,
2013. http://resources.sei.cmu.edu/asset_files/AnnualReport/2013_001_001_46024.pdf

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10009
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10009
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=34734
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9981
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10009

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 77
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Survivability and Information Assurance Education for System
Administrators

 The Challenge: Adapting System Administration to the Unexpected and to
Business

The Department of Defense, federal agencies, and industry organizations rely on networked sys-
tems that use fast-changing technology. Their reliance makes them more vulnerable to attacks,
prompting system administrators to seek new approaches to computer and network security. Not
only does technology change frequently, but it does not always work correctly. The network and
system administrators who are most effective are the ones who can react to changes and other un-
usual situations—and can actively support the business mission. However, system administrators
are typically trained to operate the technology following standard procedures; they aren’t neces-
sarily prepared to deal with the unexpected and rarely connect the technology to the fact that the
business has a mission and that it has risk as part of its operations, along with policies and proce-
dures and governance. They lack the perspective that an equipment failure or compromise could
cause the business to fail, suffer financially, and lose credibility with the public. In addition, most
system administrators inherit an existing network, yet few are taught how to analyze, maintain,
and grow that type of network. Thus, they are not prepared to handle existing computer systems
and network infrastructure components that, for example, are already (mis-) configured or have
already been attacked, and for which documentation is misleading, incorrect, or nonexistent. It is
important to educate system and network administrators about how to understand that network
and positively participate in its management, all while keeping the mission and constraints of the
business in focus.

 A Solution: Survivability and Information Assurance Curriculum

In response to the U.S. National Guard’s need for community college-level training for its system
administrators, the SEI developed a four-semester course curriculum, with a capstone project, in
survivability and information assurance (SIA). This curriculum offers a problem-solving method-
ology built on 10 key SIA principles that are independent of specific technologies. For example,
one principle is survivability—ensure the business mission can survive in the face of attacks and
breakdowns. Two others concern data: (1) Data is not just the information created by an applica-
tion; the application and the operating system that runs the application are also data, and (2) it is
essential to identify all data and then protect it appropriately, putting the most and best safeguards
on the most critical data. Another principle stresses communication skills as critical.

The SIA curriculum was designed for experienced system and network administrators, ideally
those who are receptive to the idea of technology supporting the business mission or already have
a business sense that can be honed. The curriculum includes teaching materials, labs, instructor
and student workbooks, and exams for all four courses, as well as material and instructions for the
capstone exercise, in which students must make technological changes within the constraints of
business considerations and articulate their decisions to a “manager” [Rogers 2006a, Rogers
2006b]. In 2006, the National Guard gave the SEI permission to distribute the courses through the

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 78
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CERT website.11 Free downloadable materials enabled faculty to start teaching SIA quickly. The
materials are so extensive that faculty could use them as “turn-key” courses, or educational insti-
tutions could adapt them to suit their needs. Also, the materials are not only appropriate for two-
year colleges but also for four-year institutions; portions are applicable at the graduate level. A
read-only (“general”) version of course materials is available to students and other system admin-
istrators.

 The Consequence: System Administrators Who Support the Business
Mission

System administrators make the connection between technology and business mission, using tech-
nology to help the business operate effectively and efficiently. They understand how a specific
piece of technology fits into the overall business, its contribution to that business, and its im-
portance. Their understanding of business and risk issues enables them to sustain and improve the
enterprise’s functionality and to add new functionality without a negative impact on the business
mission. They are able to communicate with business decision-makers to explain, “This is what
we’re doing; this is why we’re doing it; and this is why it makes business sense.” They are able to
answer questions such as “What’s the impact on business? What are the metrics of performance?
What does this cost? What’s the benefit? Are we avoiding costs; are we reducing costs?” They
help the enterprise networks to be better able to survive in an increasingly internet-oriented world.

 The SEI Contribution

The SIA curriculum has filled a gap in system administrator education. It is a practical and realis-
tic curriculum that layers skills training on a firm educational foundation and presents new ideas
and new approaches to many of the traditional tasks of system administrators. The quality of the
material and credibility of the SEI, its well-known CERT program, and Carnegie Mellon enable
faculty to use the course material with confidence. The SEI influence is widespread. As of 2012,
access to the faculty version of the curriculum was granted to 382 qualified faculty members rep-
resenting 235 colleges and universities located in 43 U.S. states, the District of Columbia, and one
Canadian province. The general, read-only version was downloaded 3,287 times by groups in 130
countries: 862 by organizations, 744 by educational institutions, 674 by government agencies, and
151 by others. The general version was also downloaded 856 times for personal use.

Others contributed to the influence of the SIA curriculum. The Regional Center for Systems Secu-
rity and Information Assurance (CSSIA)12 has mapped the SIA courses to two of the national
standards for security-related training13 and found that the courses meet approximately 95 percent
of the standards’ objectives.

11 Curriculum and lab overviews, and downloadable materials can be found at http://www.cert.org/cur-

ricula/sia-curriculum.cfm.

12 CSSIA is funded by the National Science Foundation.

13 NSTISSI 4011 National Training Standard for Information Systems Security (INFOSEC) Profes-
sionals , Committee on National Security Systems,
(https://www.cnss.gov/CNSS/openDoc.cfm?U5Wzl9pAb0QOxSawdnQmTA==)1994 and
CNSS 4013 National Information Assurance Training Standard for System Administrators, Commit-
tee on National Security Systems (http://www.scis.nova.edu/documents/cnssi_4013.pdf)

http://www.cert.org/cur-ricula/sia-curriculum.cfm
http://www.cert.org/cur-ricula/sia-curriculum.cfm
https://www.cnss.gov/CNSS/openDoc.cfm?U5Wzl9pAb0QOxSawdnQmTA==
http://www.scis.nova.edu/documents/cnssi_4013.pdf

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 79
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The SEI curriculum and others’ contributions to it help increase the number of system administra-
tors prepared to operate systems and networks that support business and government missions ef-
fectively and efficiently.

 References

[Rogers 2006a] Rogers, Lawrence. “The CERT Survivability and Information Assurance Curricu-
lum: Education for First Defenders.” Proceedings of the 10th Colloquium for Information Systems
Security Education, University of Maryland, Adelphi, MD, June 2006.

[Rogers 2006b] Rogers, Lawrence. “The CERT Survivability and Information Assurance Curricu-
lum.” 18th Annual FIRST Conference. Baltimore, Maryland, June 25-30, 2006.
http://www.first.org/conference/2006/papers/rogers-lawrence-slides.pdf

2004.CNSS 4013 National Information Assurance Training Standard for System Administrators,
entry level (https://www.ecs.csus.edu/csc/iac/cnssi_4013.pdf).

http://www.first.org/conference/2006/papers/rogers-lawrence-slides.pdf
https://www.ecs.csus.edu/csc/iac/cnssi_4013.pdf

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 80
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Conference on Software Engineering Education and Training

 The Challenge: A Forum for Software Engineering Education Advances and
Collaboration

Although software engineering education had emerged in a variety of programs, including the
Wang Institute, IBM Software Engineering Institute, Seattle University, and Texas Christian Uni-
versity, there was little effort towards establishing a consistent curriculum. Not only was there no
curriculum, there was no established mechanism for exchanging information about advances re-
lated to the course content, the courses themselves, or the teaching experiences, and no standard
way to encourage professional collaboration. If the SEI was to successfully “influence software
engineering curricula development throughout the education community” (SEI Charter 1984), it
needed to lead the establishment of such a mechanism.

 A Solution: The Premier Conference on Software Engineering Education

In 1986, the SEI conducted an invitation-only workshop on software engineering education
[Gibbs 1987]. One of the outgrowths of this workshop was the first Conference on Software Engi-
neering Education (CSEE), which took place in 1987 [Fairley 1989]. The conference was spon-
sored by the SEI with refereed papers and published proceedings by Springer Verlag. The major
conference roles, including the chair and many of the program committee members, were SEI
staff members. Along with the conference, a faculty development workshop was conducted to in-
troduce new SEI curriculum modules and educational materials. In effect, the conference was es-
tablished by the SEI to answer a need in the community, but it was largely run by SEI staff [Mead
2009]. One bold move in the early days of the conference series was to move the conference out
of Pittsburgh and away from the SEI. After many years in Pittsburgh, the first venture to another
location was the 1992 conference in San Diego. This particular conference, the 6th CSEE, was
chaired by an SEI staff member and boasted an attendance of more than 200.

In the early 1990s, the CSEE also became the catalyst for an e-newsletter, the Forum for the Ad-
vancement of Software Engineering Education (FASE). Over the years, it provided informal in-
formation to software engineering educators on a periodic basis. It continues to provide announce-
ments and articles to its audience, which is worldwide. The WGSEET was also an outgrowth of
the conference. The working group met twice yearly between 1995 and 2000, producing a number
of education reports and other artifacts [Mead 2009].

The conference transitioned from an SEI conference to an IEEE conference in 1996. This was a
substantial step, as it involved replacing the events planning staff at the SEI with volunteers and
securing IEEE sponsorship. It also meant that the conference would ultimately have to function as
an independent financial entity, without support from the SEI. The SEI Education Program direc-
tor was the first steering committee chair. She recruited steering committee members and devel-
oped the first formal charter for the conference. Several steering committee chairs have subse-
quently been appointed. Since this transition, the proceedings have been published by IEEE, and
the conference chairs have been volunteers outside the SEI. With more community involvement,
the program committee became much more diverse.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 81
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The CSEE conference series also broadened its focus to include a visible component on training;
as of 1997, it became known as the Conference on Software Engineering Education and Training
(CSEET). This addition reflected not so much a change of emphasis as recognition of the fact that
education and training have always gone hand-in-hand. Starting in 2003, the conference has been
periodically held in international locations, including Spain, Canada, Ireland, India, and China.
This reflects the greater penetration of software engineering education in the international com-
munity. On occasion, CSEET has been co-located with other software engineering and education
conferences, including the International Conference on Software Engineering (ICSE), the Innova-
tion and Technology in Computer Science Education Conference (ItiCSE), and the ACM Special
Interest Group on Computer Science Education
(SIGCSE).

The CSEET has since evolved to include the ASEET,
the Academy for Software Engineering Educators and
Trainers. This addition to the conference supports the
idea of mentoring as a way of growing the skills that are
needed for professional software engineering education.
In 2008, there were around 30 participants, and the
speakers included leading software engineering educa-
tors as instructors. ASEET has continued to be part of
the CSEET conference since then.

 The Consequence: Growth of
Conferences and Tracks on Software
Engineering Education

The number of conferences and conference tracks re-
lated to software engineering education has grown. The
ACM Special Interest Group on Computer Science Edu-
cation has long sponsored a conference series [SIGCSE
2008] that has contained software engineering content
from time to time. The ITiCSE conference [ITiCSE
2008] has also contained software engineering content.
The series of Conferences on the Teaching of Compu-
ting (CTC) in Ireland had a considerable amount of soft-
ware engineering content. More recently, ICSE has in-
cluded a software engineering education track [ICSE
2008]. In 2000, a Carnegie Mellon professor presented a
discussion of the future of software engineering education as part of a special track at ICSE [Shaw
2000]. Frontiers in Education (FIE) has always included software engineering content.

 The SEI Contribution

Based on the results of the initial SEI workshop on software engineering education, the CSEE
conference series was founded under SEI leadership. At the time, CSEE was the only conference
focused on software engineering education, and it helped the software engineering education com-
munity to communicate, improve, and evolve. The conference later transitioned to a community-

The View from Others

CSEET has had a significant im-
pact on the advancement of soft-
ware engineering education and
training. It has provided a forum
for educators and software engi-
neering professionals to interact
about the preparation for software
engineering practice: reporting on
the state of the field, presenting
new and innovative approaches,
sharing experiences, and debating
the best way forward.

– Tom Hilburn, Embry-Riddle
Aeronautical University

CSEET has served as a focus for
discussions that have led to such
important milestones as the
IEEE/ACM SE2004 undergraduate
curriculum, and the GSwERC
Graduate Software Engineering
Reference Curriculum.

– Tim Lethbridge,
University of Ottawa

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 82
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

based conference sponsored by IEEE and was broadened to specifically include training, thus be-
ing renamed CSEET. The conference has subsequently been held in a mix of domestic U.S. and
international locations, and has been occasionally co-located with other major conferences. There
were many additions and outgrowths from the conference, including faculty development work-
shops, FASE, WGSEET, and ASEET.

This is a typical example of how the SEI initially addresses a need with its own resources and
with heavy participation of experts in the field. After the initial need has been met, the SEI finds
an established mechanism to carry on the work and, while continuing its participation in the activ-
ity, withdraws to work on other important areas. Indeed, at this point, it is likely that most partici-
pants are unaware of the SEI’s early contribution at the critical point.

 References

[Fairley 1989] Fairley, R. E. & Freeman, P., eds. Issues in Software Engineering Education-Pro-
ceedings of the 1987 SEI Conference on Software Engineering Education. Monroeville, PA, May
30-June 1, 1987. Springer Verlag, 1989 (ISBN 0-387-96840-7).

[Gibbs 1987] Gibbs, N. E. & Fairley, R. E. Software Engineering Education: The Educational
Needs of the Software Community. Springer Verlag, 1987 (ISBN 0-387-96469-X).

[ICSE 2008] Proceedings of the 30th International Conference on Software Engineering. Leipzig,
Germany, May 10-18, 2008. ACM Publications, 2008.

[ITiCSE 2008] Amillo, J; Laxer, C.; Menasalvas Ruiz, E.; & Young, A., eds. Proceedings of the
13th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education
(ITiCSE 2008). Madrid, Spain, June 30-July 2, 2008. ACM, 2008 (ISBN 978-1-60558-078-4).

[Mead 2009] Mead, N. R. “Software Engineering Education: How Far We’ve Come and How Far
We Have to Go.” Journal of Systems and Software (2009) (doi:10.1016/j.jss2008.12.038).

[Shaw 2000] Shaw, M. “Software Engineering Education: A Roadmap,” 371-380. Proceedings of
the International Conference on Software Engineering (ICSE 2000), Future of Software Engineer-
ing Track, Limerick, Ireland, June 4-11, 2000. http://www.sigmod.org/dblp/db/conf/icse/fu-
ture2000.html#Shaw00

[SIGCSE 2008] Proceedings of the 39th SIGCSE Technical Symposium on Computer Science Ed-
ucation. Portland, OR, March 12-15, 2008. ACM, 2008.

http://www.sigmod.org/dblp/db/conf/icse/fu-ture2000.html#Shaw00
http://www.sigmod.org/dblp/db/conf/icse/fu-ture2000.html#Shaw00

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 83
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 CMU Master of Software Engineering Program

 The Challenge: The Need for a Strong Academic Software Engineering
Program

As interest in developing new educational programs for software engineering grew in the 1980s,
one problem was the absence of software engineering programs at major universities. Even with
the SEI-led design of a recommended curriculum, some schools were reluctant to establish a new
graduate degree until they had seen leadership from the top programs in computer science.

 A Solution: Creation of the CMU Master of Software Engineering Program

In 1988, the dean of the CMU School of Computer Science (SCS) asked a group of faculty from
the SCS and senior staff from the SEI to create a graduate program in software engineering. The
SEI had just published a recommended curriculum for master’s degrees in software engineering
[Ardis 1988]. Carnegie Mellon would implement a version of that program, but with a unique
component: a design studio modeled after those used in
schools of architecture and design [Tomayko 1991]. The
dean liked the way students worked informally with
their peers and faculty advisors in the CMU School of
Architecture; the master-apprentice model seemed as
appropriate for learning software design as it did for
other types of design.

The CMU Master of Software Engineering degree was a
16-month full-time program consisting of six required
core courses, seven electives, and a four-term design
studio [Gibbs 1990]. The program also included a two-
semester weekly seminar that enabled students to im-
prove their writing and presentation skills. Students
from local industry could also attend part time, and all
students were expected to have software development
experience before entering the program. Many of the
early students worked at the SEI or in local industry.

Initially almost all the core courses were taught by SEI
staff in the video studio classroom at the SEI. This al-
lowed the SEI to distribute videotaped lectures to educa-
tional partners interested in adopting those courses at
their campuses.14 The idea was to reduce the high
startup cost of teaching new courses, but with the goal
of training the faculty to eventually teach those courses
on their own.

14 Yodannis, J.; Hallman, H.; & Ardis, M. An Assessment of the Pilot-Course Offering for the Video

Dissemination Project (CMU-SEI-88-MR-8). Software Engineering Institute, Carnegie Mellon Uni-
versity, 1988.

The View from Others

My career now has a potential that
I never before dreamed of. When I
speak in meetings or conferences
about software, people listen.

– Anthony J. Lattanze, USAF.
Andrews AFB, CA, MSE
1996 [CMU 1996a]

The MSE was a great experience!
The top of the line courses and the
access to the SEI resources and
documentation, combined with the
real-world hands-on experience of
the studio was the perfect prepara-
tion for my current job.

– Alejandro Danylyzyn,
Senior Consultant,
Management Consulting/IT
Practice, Deloitte & Touche
Consulting Group, MSE
1996 [CMU 1996b]

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-MSE%20Curriculum%20131011.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 84
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The design studio was also implemented initially within the SEI facility. Students worked on year-long
projects for local industry and government organizations. Mentors for the students consisted of SEI
staff, faculty from CMU, and visiting faculty from other universities. Core courses made use of prob-
lems in the design studio projects for examples and exercises.

As the CMU MSE program matured, faculty from SCS began to play a more active role. The core
courses were redesigned to take advantage of faculty expertise and to emphasize cross-cutting tech-
niques that could be applied throughout the software lifecycle [Garlan 1995]. Eventually, the program
was moved completely into SCS on campus, although some courses are still taught by SEI staff.

 The Consequence: New Academic Programs Established

After the CMU MSE program started, several other schools created their own graduate software engi-
neering programs. In fact, the number of programs nearly doubled in the first three years after the
CMU program started. Some of these new programs benefitted from the videotaped courses provided
by the SEI. Others may have been inspired by the leadership of CMU. There are now more than 60
graduate software engineering programs in the U.S. and more than 40 undergraduate programs.

 The SEI Contribution

The CMU MSE program was created as a joint effort of the School of Computer Science and the
SEI, with equal numbers of staff from each organization involved in the initial design. Once that
design was adopted, almost all the core courses and the design studio activities were taught by
SEI staff for about five years. Gradually, more and more SCS faculty became involved in the pro-
gram, and it was moved entirely into SCS. SEI staff members have continued to teach some
courses and to serve as studio mentors.

 References

[Ardis 1988] Ardis, Mark. “The Design of an MSE Curriculum.” Proceedings of the SEI Confer-
ence on Software Engineering Education. CSEE, Fairfax, VA, April 28-29, 1988. Published as
Lecture Notes in Computer Science 327, Springer, 1988.

[CMU 1996a] Carnegie Mellon University. “Masters of Software Engineering at Carnegie
Mellon” (Brochure), 1996.

[CMU 1996b] Carnegie Mellon University. “Masters of Software Engineering at Carnegie
Mellon” (Brochure), 1996.

[Garlan 1995] Garlan, David; Brown, Alan; Jackson, Daniel; Tomayko, Jim; & Wing, Jeannette.
“The CMU Master of Software Engineering Core Curriculum,” 65-86. Proceedings of the 8th SEI
Conference on Software Engineering Education, New Orleans, LA, March 29-April 1, 1995.
Springer, 1995 (ISBN 3-540-58951-1).

[Gibbs 1990] Gibbs, Norman E.; Ardis, Mark A.; Habermann, A. Nico; & Tomayko, James E.
“The Carnegie Mellon University Master of Software Engineering Degree Program.” 152-154.
Proceedings of the Software Engineering Education Conference, Pittsburgh, PA, April 2-3, 1990.
Published as Lecture Notes in Computer Science 423, Springer, 1990.

[Tomayko 1991] Tomayko, James E. “Teaching Software Development in a Studio Environ-
ment.” SIGCSE Bulletin 23, 1 (March 1991): 300-303.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 85
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Executive Education Program

 The Challenge: Effectively Managing Software Systems

With the success of the SEI academic curricula, a demand for executive education began to sur-
face. Defense industry and DoD executives whose expertise was in areas other than software be-
gan to request executive education that would enable them to understand the issues associated
with managing software-intensive systems.

 A Solution: Executive Education Program

The SEI recruited a retired industry vice president and a
retired flag officer to develop an executive education
program [Pietrasanta 1987]. The executive education of-
ferings were extremely popular with senior executives,
and the Air Force adapted the material for a program
called Bold Stroke for Officers at the rank of 0-6 and
above. Recognizing the role software played in Desert
Storm, the Army asked the SEI to offer a version of its
executive education program to Army flag officers and
Senior Executive Service (SES) civilians.

In the following years, the SEI continued to provide ex-
ecutive education to the DoD. The United States Army
Strategic Software Improvement Program (ASSIP)
funded SEI activities with the goal of dramatically im-
proving the acquisition of software-intensive systems.
One of the ASSIP-funded activities was the Army Sen-
ior Leader Education Program (SLEP). These annual
programs were developed by the SEI for the Army and
consisted of tutorials by SEI researchers about solving
the software challenges encountered by the Army senior
leaders.

The SEI continues to offer executive education pro-
grams for commercial organizations. For example, the
SEI developed and hosted “Technovation,” a week-long
executive training lab specifically designed to support
GE’s Experienced Information Management Program
(EIMP). Technovation participants represented a range
of GE divisions and information technology roles. The
executive training was delivered by experts from the SEI and guest lecturers from Carnegie
Mellon faculty in areas such as robotics, interdisciplinary collaboration, team development, soft-
ware architecture and product line development, service-oriented architecture, data mining, and
cybersecurity [SEI 2012].

The View from Others

Given that the complexity of sys-
tems is increasing exponentially,
Lt. Gen. Ross Thompson…decided
to make sure we can maintain
these systems. The chief software
architect (CSWA) will manage the
software architecture to ensure
best practices are being followed.
This gives the PEO a better chance
of overcoming system risks.

– Robert Teri, U.S. Army
Senior Software Acquisition
Manager [SEI 2009, p. 20]

Some of the biggest takeaways for
us were concepts around interdis-
ciplinary teams, creativity, and in-
novation. At GE we’re always
looking for new ways to be even
more innovative, so this content
was especially interesting and
valuable.

– Jennifer Cherry, Leader – IT
Talent Development for GE,
commenting on
Technovation. [SEI 2012]

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 86
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 The Consequence: Improved Management by Executives

The SEI continues to develop and deliver executive education programs that meet the strategic
needs of course customers. These educational programs support the growth of professionals and
contribute to the evolution of these organizations’ leadership and strategy.

For example, during the April 2009 Army Senior Leader Education Program (SLEP), Lt. Gen.
Ross Thompson heard the director for the SEI Research, Technology, and System Solutions Pro-
gram speak on the importance of architecture-centric practices. In this executive education ses-
sion, attendees consistently named integration or interoperability as their main challenge. Thomp-
son responded by declaring that appointment of a chief software architect (CSWA) would be
mandatory for every Program Executive Office (PEO). The policy further mandates that the
CSWA ensure consistent implementation of appropriate standards and processes [SEI 2009].

 The SEI Contribution

The SEI has drawn upon the unique resources within the institute and within Carnegie Mellon to
offer executive education that looks forward to new solutions. The SEI has continued to be sought
out as a source for executive guidance and quality education. These programs have bolstered the
adoption of SEI technologies and the success of our customers.

 References

[Pietrasanta 1987] Pietrasanta, A. “Software Engineering Education in IBM,” 5-18. Proceedings
of the 1987 SEI Conference on Software Engineering Education, Monroeville, PA, April 30-May
1, 1987. (Published as Issues in Software Engineering Education. Springer Verlag, 1989, ISBN 0-
387-96840-7).

[SEI 2009] “Army Requires PEOs to Appoint Chief Architect.” 20-21. Year in Review 2009. Soft-
ware Engineering Institute, Carnegie Mellon University, 2009. http://www.sei.cmu.edu/library/as-
sets/2009_YIR.pdf

[SEI 2012] “SEI Bolsters GE Professional Development Curriculum with ‘Technovation’ Execu-
tive Training Lab.” (Press Release) Software Engineering Institute, Carnegie Mellon University,
2012. http://www.sei.cmu.edu/newsitems/technovation-2011.cfm

http://www.sei.cmu.edu/library/assets/2009_YIR.pdf
http://www.sei.cmu.edu/library/assets/2009_YIR.pdf

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 87
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Professional Training

 The Challenge: Providing High-Quality Training to Software Practitioners

SEI research projects produced results that required training project stakeholders to successfully
transition the solutions. The training work products could, in turn, support the adoption of re-
search by an audience beyond the SEI project stakeholders. Professional training would enable the
SEI to disseminate knowledge on a large scale and build a solid base of competency among soft-
ware engineering practitioners.

 A Solution: Quality Assurance for SEI Training Products

To meet this dissemination need, the SEI established the means to provide high-quality profes-
sional education and training. The SEI produced a series of instructor-led training courses that
were offered both in the SEI and elsewhere. SEI courses are developed and taught by technical
staff members, and effectively disseminate mature SEI solutions to pervasive problems.

The Education and Training Review Board (ETRB) was established in 1990 to provide a mecha-
nism for quality assurance for all SEI education and training materials produced in-house. The
ETRB reviewed and approved each instructional product at three points during the development
process: proposal, design, and product completion.

A supplemental review was required if the product underwent significant revisions after final ap-
proval and product release. The ETRB comprised six representatives (including the ETRB chair),
one from each of the following SEI areas:
1. education

2. instructional design

3. software technology

4. product planning

5. program development

6. technical communications

Over time, the ETRB members realized that they were no longer effectively serving the changing
needs of the SEI’s organizational structure and culture, and the board was disbanded in 1997. The
ETRB process guidelines were replaced by SEI Work Process 4.1, “Instructional Product Devel-
opment,” which was subsequently added to the list of SEI products covered by SP800-10, “Docu-
ment Development.” This standard practice has since evolved into a best practice for the SEI.

With these quality procedures in place, the catalog and popularity of SEI education and training
continued to grow. In 1995, the SEI had 12 courses, and SEI instructors delivered 33 public
course offerings and 31 customer on-site offerings. By 1997, the SEI had a catalog of 17 courses
about process improvement, measurement, change management, and risk management. By 2001,
the SEI had 34 courses, with most new courses addressing network and computer security.

In 2003, the SEI announced a new software architecture curriculum. Based on decades of experi-
ence in architecting software-intensive systems and supported by widely acclaimed practitioner

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 88
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

books in the SEI Addison-Wesley Series, this collection of six courses equips software profes-
sionals with state-of-the-art practices so they can efficiently design software-intensive systems
that meet their intended business and quality goals.

The SEI established the Professional Development Center (PDC) in 2008. The PDC was staffed
by education and administration professionals responsible for supporting and growing the SEI’s
flourishing professional education activity.

The SEI now offers courses for participants at many skill levels. Introductory courses are de-
signed to provide a basic understanding of proven practices, while advanced courses train partici-
pants to measure the process capability of their own organizations or other organizations. Soft-
ware managers and practitioners learn about proven techniques to increase profit and quality,
adapt to change, build teams, mitigate risk, and improve process. The course offerings are held at
SEI facilities in Pittsburgh, Pennsylvania, and Arlington, Virginia; online; and at other national
and international venues.

 The Consequence: SEI Results Move from Research into Practice

SEI professional courses help to move state-of-the-art technologies and practices from research
and development into widespread use. The software engineering professionals from around the
globe who attend SEI professional training courses broaden their skills and future career opportu-
nities.

The content of SEI training continues to evolve based on new research. The SEI also continues to
evolve the training delivery infrastructure to provide the best possible vehicles for the dissemina-
tion of SEI solutions.

 The SEI Contribution

As the course catalogs grew, the SEI provided high-quality training that received consistently pos-
itive feedback from learners. SEI courses present the relevancy of SEI research to the individual
and to his or her workplace. Professional training has proven to be an effective vehicle for meet-
ing the SEI’s mission of transition.

The SEI’s professional education and training activity also contributed to the growth of a market
for software engineering professional training. Many commercial professional training providers
now offer training based on SEI methods and tools.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 89
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Education and Training Delivery Platforms

 The Challenge: Deliver Education and Training to Large, Geographically
Dispersed Audiences

In 1984, not only were there very few academic programs in software engineering, there were
very few software engineering courses and few faculty prepared to teach the subject matter. Soft-
ware engineering was evolving, and it included subject matter (such as software specification,
verification and validation, and project management) not normally covered in computer science or
other disciplines. Although the subject matter was taught in various industrial continuing educa-
tion programs for practicing engineers, it was not part of an accepted academic discipline [Ardis
2005].

Faculty who participated with the SEI in development of the model curriculum made clear that,
while they had an intellectual grasp of the material, they did not have the experience to translate
that material into lectures and courses. Commercial companies were training their practicing engi-
neers on evolving methodologies specific to their respective companies, but this material was gen-
erally not visible to the academic community.

 A Solution: Take Advantage of Changing Technologies
The SEI recognized the opportunity to accelerate the learning curve by using technology. The SEI
could increase its support to other universities by videotaping the Carnegie Mellon courses and
offering them to other colleges and universities. Recognizing that it was neither practical for SEI
people to travel to other universities nor for university faculty from other universities to spend sig-
nificant time at the SEI, the SEI constructed a video studio. The class lectures of six courses from
the model curriculum selected by the CMU MSE program [Gibbs 1990] were delivered to CMU
students in the studio. The video recordings of these lectures were then provided to other universi-
ties. Some universities showed the videos as the course offering. At other universities, faculty re-
viewed the videos to further their own understanding and then offered similar, tailored lectures to
their students. Florida Atlantic University (FAU) had a unique partnership with the SEI and grad-
uated a number of master of software engineering students as well as certificate holders—as a re-
sult of the partnership and the creative way in which FAU used the MSE videos and collaborated
with the MSE faculty.

In subsequent years, the SEI has continued to supplement traditional classroom training by taking
advantage of new technology to capture and disseminate training. The video studio, created to
support the academic education courses, was subsequently used to record lectures by leaders in
the software engineering community to provide insight into important developments, resulting in
a stand-alone public video series. The video studio was also used to videotape many of the SEI
continuing education courses.

As media moved beyond videotape, the SEI developed a catalog of asynchronous web-based, self-
paced e-learning and broadcast virtual “live” online training. The SEI maintains an eLearning
Portal, which is the platform for the development and delivery of SEI eLearning courses. This
portal supports a wide variety of training formats to best fit the SEI content and learners’ prefer-
ences. Blended learning courses, especially the Personal Software Process (PSP) curriculum, use
both an online and a classroom instructor to provide instruction. Other asynchronous online

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/7-CMU%20MSE%20Program%20131011.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 90
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

courses use video, animation, graphics, tests, and recorded lectures to bring SEI instructional con-
tent to learners across the globe.

More recently, the SEI has been producing podcasts and webinars. The SEI website provides free
access to the SEI Podcast Series, a collection of recordings of SEI experts discussing their re-
search and field experience. The SEI Webinar Series provides a public forum for the latest re-
search, best practices, and cutting-edge solutions developed at the SEI. These webinars feature
SEI researchers discussing their work in a flexible format. Customers can view a webinar in real
time and then participate in the live question and answer session that follows each presentation.
Customers can also view webinar recordings later as streaming video. The SEI periodically hosts
virtual events that offer to the public a series of interactive, live lectures by SEI experts. Webinars
and virtual events regularly draw an audience of hundreds of learners interested in the latest de-
velopments of SEI research.

The SEI is keeping pace with learning trends with m-learning—mobile learning on the go—ensur-
ing that online training resources are available on the learner’s workstation, laptops, and tablets.

 The Consequence: Software Engineering Is Adopted as a Discipline

There can be little doubt that software engineering would have become an accepted academic dis-
cipline had the SEI not undertaken the video studio. However, it is equally clear that the SEI was
in large part responsible for accelerating the process. That a university with Carnegie Mellon’s
stature in computing undertook to offer a master’s degree in software engineering, based on the
model curriculum, and made videotapes of those courses available contributed significantly to
early adoption by other colleges and universities. Certainly there are university programs that
evolved independent of SEI influence, but the fact that the SEI model curriculum was endorsed by
the IEEE and ACM demonstrates that the SEI’s influence was a significant factor.

To maintain this positive influence on the maturation of software engineering, the SEI continues
to evolve the channels of disseminating educational material to an ever-broadening audience.
From early videotapes to the current eLearning portal, the SEI reaches a global audience.

 The SEI Contribution

The SEI role was to accelerate the transition of material from industrial experience to the aca-
demic community. The idea of a video studio had already been demonstrated at other universities
and in industry for other types of courses. The subject matter had already been tested in the aca-
demic community at the Wang Institute [Ardis 1987]. However, because of the SEI’s position in a
respected university, incorporating those ideas into a framework that made it accessible to other
colleges and universities convinced faculty elsewhere that material could be taught effectively and
had a sufficient academic foundation. This success led to a successful adoption of internet-ena-
bled learning that continues to benefit a broad audience.

 References

[Ardis 1987] Ardis, Mark. “The Evolution of Wang Institute’s Master of Software Engineering
Program.” IEEE Transactions on Software Engineering 13, 11 (November 1987): 1149-1155.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 91
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[Ardis 2005] Ardis, Mark. “An Incomplete History of Master of Software Engineering Programs
in the United States.” Presentation at the 15th Reunion of CMU MSE Program, August 6, 2005.
http://personal.stevens.edu/~mardis/papers/MSEHistory.pdf

[Gibbs 1990] Gibbs, Norman E.; Ardis, Mark A.; Habermann, A. Nico; & Tomayko, James E.
“The Carnegie Mellon University Master of Software Engineering Degree Program,” 152-154.
Software Engineering Education Conference. Pittsburgh, PA, April 2-3, 1990. Published as Lec-
ture Notes in Computer Science #423. Springer 1990.

http://personal.stevens.edu/~mardis/papers/MSEHistory.pdf

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 92
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Technology for Cyber Workforce Development

 The Challenge: Training the Cyber Workforce in a Rapidly Changing World

Organizations are faced with the ongoing challenge of ensuring that their workforces have the
most current knowledge, skills, and experiences to gain proficiency in areas relevant to their jobs.
This challenge is particularly great for a cybersecurity workforce because industry trends, prac-
tices, and technologies are constantly changing, and attackers constantly seek new ways to cir-
cumvent security controls and infiltrate systems. Moreover, it is expensive for organizations to de-
velop and execute scalable and realistic training events and to reach the large number of people
who need the training. Traditional training models still use brick-and-mortar classrooms to pro-
vide infrequent instruction directed at individual students. This approach cannot keep up with the
pace of change or provide effective mechanisms for the workforce to get the real-world experi-
ence it needs to operate in cyberspace. It also takes students away from their job duties and leads
to lost productivity.

The Department of Defense has some additional, unique challenges. The dynamic nature of the
internet threats, combined with the anonymity it allows, the absence of borders, and undefined ju-
risdictions and laws, make it challenging to define and achieve successful offensive and defensive
operations. Although the DoD has made some gains in cyber defense technologies, less progress
has been made in defining cyber operations; traditional training approaches are leaving U.S. cyber
warriors under-trained, reactive, and at a tactical disadvantage. The DoD workforce cannot effec-
tively train as it fights as part of normal operations, and service members and DoD civilians can-
not use production networks for operational training. As a result of these limitations, U.S. national
security is at risk [Gjelten 2010].

 A Solution: Virtual Training Technology for Individuals and Teams

The SEI Virtual Training Environment (VTE) and Exercise Network (XNET) have provided cost-
effective, up-to-date, and relevant training to more than 100,000 active, globally distributed users,
meeting the unique training requirements of cybersecurity [Hammerstein 2010, USSS 2005]. In
2013 they evolved into the Simulation, Training, and Exercise Platform (STEPfwd) [CERT 2013].

All three technologies have elements in common: platform-independent, web-based delivery of
video-captured instruction that presents a “read it, hear it, see it, do it, master it” progression of
course lectures, demonstrations, and hands-on labs. Individual workforce members can access the
training anytime, anywhere. The material is divided into modules they can fit into their work
schedule. The lecture portion includes the same elements found in an instructor-led setting, such
as slides, visuals of the instructor and other students, and demonstrations. It includes a script as
another mode for learning, and a topic index and progress indicator that aid self-pacing [Hammer-
stein 2010].

VTE was the culmination of early SEI work in using technology for distance education and train-
ing, which started at the SEI’s inception in 1984. Initially, the SEI recorded lectures onto vide-
otapes and mailed them to remote students. As standards for video on computers emerged, the SEI
shifted to distributing lectures on CD and DVD-ROM. The SEI also developed a multimedia
course for DARPA in 1993, in response to a request for training that was scalable and more inter-
active and engaging than videotape. The course development was expensive and too lengthy to be

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 93
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

practical for keeping content current. The following year, the SEI offered courses through the Na-
tional Technological University. Distant viewers could watch a live class and interact through tel-
ephone and a precursor of chat. However, they preferred videotapes of the class to watch at their
convenience in their offices; they valued self-pacing. The next SEI advance was Just-in-Time
Learning (JITL), which was modular, quick, low cost, and scalable. It allowed both self-pacing
and keeping content current. JITL was the direct precursor of VTE and contained many of the
same elements. In 2005, JITL was ported to the web to become VTE.

XNET extended the capabilities of VTE’s individual
training by providing a virtual, isolated, and dedicated
exercise environment that enabled teams to gain realistic
experience outside of their operational networks. Devel-
opment started in 2008, in response to the cyber training
and evaluation needs of the DoD, to provide practical
experience and evaluate the readiness of DoD personnel
[SEI 2011]. SEI staff observed the DoD’s difficulty in
setting up cyber exercises while giving direct support
for exercises at military academies. In addition, the real-
world experience of two SEI staff members who were in
the military gave them first-hand knowledge of the diffi-
culty of providing essential training to military units. In
XNET, trainees saw a replication of the systems they
were using in real life. Using a standard web browser, a
team could assemble in a “virtual room,” regardless of
members’ physical location. The training events could
scale from small teams to hundreds of globally dis-
persed participants.

The next advance was STEPfwd, first available in 2013
(https://stepfwd.cert.org/vte.lms.web). STEPfwd com-
bines elements of VTE and XNET, while taking ad-
vantage of advances in technology, to provide continu-
ous professional development for cybersecurity
professionals. It includes individual on-demand training
similar to the virtual classroom of VTE and the network
environments similar to XNET for team development.
In addition, network simulations can be built in real
time. Both individuals and organizations can track pro-
gress.

 The Consequence: Unified Platform for Cyber Workforce Development

The DoD and federal and state agencies have a highly skilled workforce that can handle the chal-
lenges of a fast-changing cyber world. The workforce maintains essential proficiency even if it is
globally distributed, and those in charge of training can accurately evaluate their personnel’s mis-
sion readiness. Most importantly, DoD cyber warriors have an advantage over their adversaries.
Individuals using STEPfwd (and, previously, VTE and XNET) technologies shift between the

The View from Others

Exercises like Cyber Flag are im-
portant because they provide an
assessment and a validation of
how well U.S. Cyber Command
can perform its real-world mission
to operate and defend the DoD
networks across the full range of
cyber operations…

The exercise was successful be-
cause it enabled the command to
integrate and synchronize joint
warfighting efforts with the Service
Cyber Components in a realistic
scenario.

– Air Force Col. George
Lamont, on Cyber Flag
[Johnson 2011]

A superb, world-class event. I saw
a complete cadre of cyber warri-
ors so energized about fighting an
extremely complex, realistic cyber
threat scenario.

– Gen. Jon Davis, deputy
commander for U.S. Cyber
Command, on Cyber Guard
[Johnson 2012]

https://stepfwd.cert.org/vte.lms.web

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 94
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

training and job duties without one interfering with the other. Travel to classroom training is elim-
inated, and productivity is maintained. They gain essential cyber training that the SEI keeps cur-
rent with the rapidly changing state of cybersecurity. Distributed teams using STEPfwd gain
hands-on experience with the latest security threats and technology, and practice their skills
against real-world scenarios. They work in an isolated environment that mimics their operational
network and eliminates the setup and configuration time associated with hosting an exercise. The
experience they gain through routine practice is a decisive factor in how effectively they respond
in emergency situations and, for the DoD, combat operations. Effective and up-to-date cyber
training prepares the cyber workforce to safeguard U.S. national security.

 The SEI Contribution

The SEI shifted the paradigm away from the traditional classroom-based training models. VTE,
XNET, and STEPfwd have been next-generation content delivery platforms with no equivalent in
the private sector. The technology’s flexibility enables the SEI to cost-effectively keep the content
current with constantly changing attack techniques, industry trends, practices, and technologies.

The SEI is filling technology and methodology gaps to empower the DoD and government agen-
cies to train and maintain the most capable and mission-ready cyber workforce in the world. More
than 80,000 service members and civilians used VTE to meet the compliance requirements de-
fined in the Department’s 8570.1 Information Assurance Workforce Development program [SEI
2008]. VTE is also the primary training and certification mechanism for the DoD’s Host Based
Security System (HBSS) initiative. In 2012, VTE was transitioned to, and is now operated by, the
federal government as part of its FedVTE program (https://www.fedvte-fsi.gov/).

XNET was used by several DoD organizations. Notably, it was the primary training plat-
form/game space for U.S. Cyber Command’s (CYBERCOM) Cyber Flag joint military cyber ex-
ercise and the Office of the Secretary of Defense’s (OSD) International Cyber Defense Workshop.
In the fall of 2013, STEPfwd was used for CYBERCOM’s joint military showcase event, Cyber
Flag 14-1. The SEI will continue to investigate new approaches to continuous operational training
and evaluation that make knowledge, skills, cyber experience-building, and measurement globally
accessible in highly collaborative, web-centric learning environments.

 References

[CERT 2013] Cyber Workforce Development. CERT Program, Software Engineering Institute,
Carnegie Mellon University, 2013.

[Gjelten 2010] Gjelten, Tom. “Cyberwarrior Shortage Threatens U.S. Security.” National Public
Radio (NPR), July 19, 2010. http://www.npr.org/templates/story/story.php?storyId=128574055

[Hammerstein 2010] Hammerstein, Josh & May, Christopher. The CERT Approach to Cybersecu-
rity Workforce Development (CMU/SEI-2010-TR-045). Software Engineering Institute, Carnegie
Mellon University, 2010. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9697

[Johnson 2011] Johnson, Col. Rivers. “U.S. Cyber Command Conducts Tactical Cyber Exercise.”
Soundoff! December 10, 2011. http://www.ftmeadesoundoff.com/news/9475/us-cyber-command-
conducts-tactical-cyber-exercise/

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9697
https://owa.sei.cmu.edu/owa/redir.aspx?C=y8jMd8U3REKXLSK97mBUZO5aryq119EIIg0RJxfHP1SyC5C-UfHXqoWAU-e_s2u-pXxi5rD7qPY.&URL=http%3a%2f%2fwww.ftmeadesoundoff.com%2fnews%2f9475%2fus-cyber-command-conducts-tactical-cyber-exercise%2f
https://www.fedvte-fsi.gov/
http://www.npr.org/templates/story/story.php?storyId=128574055

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 95
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[Johnson 2012] Johnson, Col. Rivers. “Cyber Guard Exercise Focuses on Defensive Cyberspace
Operations.” U.S. Army, August 16, 2012. http://www.army.mil/mobile/article/?p=85786

[SEI 2008] “VTE Helps DoD Meet Remote Training Requirements and Cut Costs.” 2008 Year in
Review. Software Engineering Institute, Carnegie Mellon University, 2008: 11-12. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?assetID=30140

[SEI 2011] “CERT Exercise Network (XNET) Instrumental in Successful Test of Cyber Attack
Readiness,” 30-31. 2011 Year in Review. Software Engineering Institute, Carnegie Mellon Uni-
versity, 2011. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=30121

[USSS 2005] United States Secret Service, Criminal Investigative Division, USSS-CERT Liaison.
“Virtual Training Environment (VTE) Pilot Study.” Pittsburgh, PA, 2005.

http://www.army.mil/mobile/article/?p=85786
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetID=30140
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetID=30140
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=30121

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 96
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 97
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4 Management

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 98
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 99
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 5: Management Timeline

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 100
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 101
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Introduction to Management

When the SEI was established, the DoD and defense contractors generally understood that certain
software engineering practices produced consistent results. Unfortunately, those practices were
not documented or widely recognized. Software project planning and tracking, version control,
configuration management, and quality management were not well understood in the context of
the overall management of a software development project. To complicate matters, software tools
supporting such activities were often home-grown, with idiosyncrasies peculiar to the organiza-
tion. Often, the choice of tool would dictate how processes were defined and how they interacted.
Nevertheless, there were examples of successful software development programs and a growing
body of literature to support the concept that software could be managed by a process [Boehm
1981].

 Management of the Software Process

The DoD identified the management of the software component of programs as a major problem
area [DoD 1982], and the DoD STARS strategy envisioned a managed process well supported by
automated tools [Druffel 1983]. Consequently, the SEI strategic plan identified the management
of the software development process—by both the DoD program offices and the defense contrac-
tors—as a fundamental activity [Barbacci 1985]. Several companies, most notably IBM, had ma-
ture efforts aimed at management of the software development process that had proven effective
[Humphrey 1985].

The SEI recruited a retiring executive from IBM who had been instrumental in creating and man-
aging the IBM efforts and initiated work on the process management framework in 1986. Shortly
thereafter, the Air Force program manager asked the SEI to conduct a study of “best practices.”
The SEI used this customer interest to drive the process management framework effort. Several
workshops were conducted with leading software professionals in the DoD, defense industry,
commercial industry, and academia to elicit a consensus on practices that consistently led to im-
proved software development. Eighteen practices were identified. To help organizations deter-
mine how well their work stacked up against these practices, the SEI produced a Maturity Ques-
tionnaire [Zubrow 1994]. Response to this questionnaire was overwhelmingly positive, both from
the DoD and the defense industry.

Initially, the questionnaire identified 18 key process areas and a five-level model of organizational
maturity based on the implementation of the process areas. As the community began to adopt
these ideas, they expressed the need for a more precise definition of the practices and the model.
In response, the SEI developed the Capability Maturity Model for Software15 [Paulk 1993], pub-
lished a book, and created several reports on managing the software process to help community
members evaluate their process management capability and proactively take steps to improve

15 Paulk, M. C.; Curtis, B.; Chrissis, M. B., et al. Capability Maturity Model for Software (CMU/SEI-91-

TR-24). Software Engineering Institute, Carnegie Mellon University, 1991. No longer available.

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-The%20Capability%20Maturity%20Model%20for%20Software%2014103.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 102
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Humphrey 1989, Fowler 1990, Kitson 1993]. With the publication of an explicit model of soft-
ware development practice, worldwide adoption grew each year for many years. The Software
CMM thus launched the process improvement movement, and other CMMs eventually emerged
from the SEI and others as communities recognized their value [Davenport 2005].

 Support for Acquisition Offices

After the initial efforts to help contractors assess the maturity of their software processes and initi-
ate process improvement activities, the Air Force program manager asked the SEI if there were a
way that the acquisition offices could assess the maturity of their contractors. This request put the
SEI in a serious dilemma. From the earliest days of the assessment work, the SEI made it clear
that it must have the ability to protect the privileged information that it gathered in assisting de-
fense contractors. Yet, on behalf of the DoD customer, the Air Force made the case that program
offices needed some insight into their respective contractors. The SEI, therefore, began investigat-
ing the possibility of an assessment mechanism for use by government program offices. The Soft-
ware Capability Evaluation (SCE) method was developed by the SEI, along with training and doc-
umentation to support its use by the DoD acquisition community [Averill 1993]. The SCE method
was widely used in software-intensive systems acquisitions and provided an incentive for the use
of the SEI’s CMM to achieve improvements in both management and technical practices within
the community that served the DoD. The current evolution of this work is considered a de facto
standard for evaluating and improving process management in software and systems engineering.

 Maturity Profile

While the models were useful for improvement and appraisal, initially there were no data availa-
ble on the adoption of the model or the results of the appraisals. To address this need, the Com-
munity Maturity Profile was developed. It began with the publication of a report on assessments
conducted through 1991. Then the SEI realized the community needed more information about
the process maturity of the software engineering community. The SEI began the work of develop-
ing the processes, procedures, and infrastructure to allow the reporting of assessment results as a
matter of routine by those performing them. In 1992, the SEI began publishing a quarterly report
that included a summary and analysis of the accumulated assessment results. Providing this kind
of updated information of value to the community motivated those conducting assessments to
share their results with the SEI. Also, as more results were submitted, more analyses could be
conducted; and the ideas for those analyses came from members of the community as well as
from SEI researchers. Over time, the Community Maturity Profile became the principal source of
information regarding the adoption of the CMM and CMMI and the state of the community in
terms of process improvement [Zubrow 2003].

 Expansion of Maturity Modeling

After the first Capability Maturity Model was created for use in software development, it became
widely recognized as a powerful framework for understanding and improving processes in multi-
ple disciplines. In response to strong community requests, the SEI produced maturity models for
three other areas: the People CMM [Curtis 2003] for managing human assets, the Systems Engi-

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/3-AppraisalMethods140103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/3-AppraisalMethods140103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/4-%20Maturity%20Profile%20140103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/4-%20Maturity%20Profile%20140103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/7-CMMI%20140103.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 103
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

neering CMM [SEI 1995] to describe the essential elements of an organization’s systems engi-
neering process, and the CERT Resilience Management Model for managing operational resili-
ence [Caralli 2010].

 The People CMM

The People CMM employs the same Process Maturity Framework of the SW-CMM to support the
foundation of best practices for managing and developing an organization’s workforce. Based on
the best practices in fields such as human resources, knowledge management, and organizational
development, the People CMM guides organizations in improving their processes for managing
and developing their workforce. The People CMM helps organizations characterize the maturity
of their workforce practices, establish a program of continuous workforce development, set priori-
ties for improvement actions, integrate workforce development with process improvement, and
establish a culture of excellence.

 The Systems Engineering CMM (SE-CMM)

The SE-CMM describes the essential elements that must exist to ensure good systems engineering
and provides a reference for comparing actual systems engineering practices against them. Good
systems engineering is the key to success in market-driven and contractually negotiated market
areas, and the SE-CMM provides a way to measure and enhance performance in that arena. It was
designed to help organizations improve through self-assessment and guidance in the application
of statistical process control principles. In conjunction with the model itself, a companion ap-
praisal method exists, the SE-CMM Appraisal Method, for benchmarking the process capability
of an organization’s or enterprise’s systems engineering function.

 The CERT Resilience Management Model

In the late 1990s, the DoD faced a set of problems shared with organizations in every sector—
U.S. federal government agencies, defense and commercial industry, and academia—arising from
increasingly complex business and operational environments. These problems involved stress re-
lated to operational resilience, that is, the ability of an organization to achieve its mission even un-
der degraded circumstances. The traditional disciplines of security, operational continuity, and in-
formation technology operations needed to be expanded to provide protection and continuity
strategies for high-value services and supporting assets commensurate with these new operating
complexities. The SEI recognized that the best practices of such organizational challenges could
best be managed with a capability maturity model. Over the ensuing 10 years, the SEI engaged
the relevant communities in evolving such a model, reflecting the best practices of such diverse
organizations as the DoD, defense industry, commercial industries, and financial services, to
evolve a maturity model that embodied best practices. This work culminated in the CERT Resili-
ence Management Model that was released in 2010. It has been applied successfully to a wide
range of problems, including assessing the capability of U.S. IT-based critical infrastructures to be
resilient in the presence of an attack and building an incident management capability in develop-
ing nations.

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/5-People%20CMM%20140103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/6-Managing%20Operational%20Resilience%20140109.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/6-Managing%20Operational%20Resilience%20140109.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 104
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Integration of Maturity Modeling

The Capability Maturity Model Integration (CMMI) effort was initiated to improve the usability
of maturity models by integrating many different models into one framework. The best practices
in CMMI more explicitly linked management and engineering activities to business objectives
and incorporated lessons learned from several additional areas, including measurement, risk man-
agement, and supplier management. The software engineering, management, and measurement
processes defined by CMMI have seen widespread adoption, with implementations in 74 coun-
tries on six continents.

CMMI models were developed in three specific areas: product and service development [CMMI
2010a], service establishment, management, and delivery [CMMI 2010b], and product and service
acquisition [Bernard 2005]. Each CMMI model was designed to be used in concert with other
CMMI models, making it easier for organizations to pursue enterprise-wide process improvement.

4.0.8.1 CMMI for Development

The CMMI for Development (CMMI-DEV) covers activities for developing both products and
services. Organizations from many industries, including aerospace, banking, computer hardware,
software, defense, automobile manufacturing, and telecommunications, use CMMI-DEV. It in-
cludes practices that cover project management, process management, systems engineering, hard-
ware engineering, software engineering, and other supporting processes used in development and
maintenance.

4.0.8.2 CMMI for Acquisition

The CMMI for Acquisition (CMMI-ACQ) provides guidance for applying CMMI best practices
in an acquiring organization. Although suppliers can provide artifacts useful to the processes ad-
dressed in CMMI-ACQ, the focus of the model is on the processes of the acquirer. Best practices
in the model focus on activities for initiating and managing the acquisition of products and ser-
vices to meet the needs of customers and end users.

4.0.8.3 CMMI for Services

The CMMI for Services (CMMI-SVC) model provides guidance for applying CMMI best prac-
tices in a service provider organization, with best practices covering the activities needed to pro-
vide quality services to customers and end users. CMMI-SVC integrates bodies of knowledge that
are essential for a service provider and includes best practices from government and industry. It
can be treated as a reference for the development of the service system that supports delivery of
the service. In cases in which the service system is large and complex, the CMMI-DEV model can
be effectively used to develop such a system.

 Smart Grid Maturity Model: A New Approach for Utilities

The demand for electricity is projected to nearly double worldwide from 2009 to 2035, which
could lead to significantly higher prices and blackouts. A smart grid could help to address these
issues, but the transformation to smart grid is a major undertaking. The Smart Grid Maturity
Model (SGMM) [SGMM 2011] supports utilities planning a move to smart grid use. It was placed

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/7-CMMI%20140103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/8-CMMI-ACQ%20140103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/9-SGMM%20120110.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/9-SGMM%20120110.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 105
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

under SEI stewardship in 2009. Development of the SGMM began in 2007, when IBM formed a
coalition of major utility companies to change the way power is generated, distributed, and used
by adding digital intelligence to the system. The SGMM product suite now consists of the model
itself, the Navigation Process of expert-led workshops and analysis, the Compass questionnaire-
based assessment for determining maturity ratings and performance comparisons, Navigation Pro-
cess training, and a program to license organizations and certify individuals to deliver the Naviga-
tion Process.

 Characterizing Software Risks

As the SEI technical reputation grew, the DoD began requesting that the SEI conduct “red-teams”
on programs that appeared to be in serious trouble. After one such exercise, the DoD program
manager asked the SEI to provide a briefing of its findings. After the presentation, a senior DoD
official in the audience issued a challenge: “It is clear that the SEI can convene a team of software
experts and successfully assess the risks in a software system. Would it be possible for the SEI to
capture that knowledge and present it in a way that knowledgeable people who are not experts can
make a similar assessment without the SEI’s help?”

The SEI launched a research effort to identify and offer mitigating strategies for software risks.
The expectation was that by capturing and cataloging sources of software failures, DoD program
offices and their contractors would have a basis for discussion about risk in their programs. The
SEI produced several related risk management products that had the desired effect. The SEI risk
approach became the de facto mechanism used by many program offices. One Navy program
manager commented that the approach allowed him to identify a single, potentially catastrophic
risk, which made the effort worthwhile.

As the SEI understanding of software-related risks matured, that understanding led to approaches
that influenced several SEI products, including security, commercial off-the-shelf (COTS) soft-
ware, architecture, and the Risk section of the CMMI.

 Bringing Discipline to Software Development Activities

While the CMM had a substantial positive effect on the management system for software devel-
opment [Herbsleb 1997], another significant step in quality was taken when the improvement pro-
cess was extended to the people who actually do the work—the practicing engineers [Humphrey
1995]. The Personal Software Process (PSP) was built on the principle that every engineer who
works on a software system must do quality work to produce a quality system. The development
of the PSP began with the application of CMM principles to writing small software programs.
Further refinement led to a disciplined personal framework that allows engineers to establish and
commit to effective engineering and management practices for their software projects.

Skilled engineers and defined processes are essential for developing software-intensive products,
but effective engineers must also be able to work on teams. The Team Software Process (TSP)
was developed to help development teams establish a mature and disciplined engineering practice
that produces secure, reliable software in less time and at lower costs [Humphrey 2000]. The TSP
has been applied in small and large organizations in a variety of domains with documented re-

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/10-Software%20Risk%20Management%20140103.docx
https://collaboration.sei.cmu.edu/sites/SecurityChapter/SecurityChapter/1-IntroToSecurity140120L.docx
https://collaboration.sei.cmu.edu/sites/Engineering%20Methods/Engineering%20MethodsChapter/7-COTS-BasedSystems131205.docx
https://collaboration.sei.cmu.edu/sites/Engineering%20Methods/Engineering%20MethodsChapter/7-COTS-BasedSystems131205.docx
https://collaboration.sei.cmu.edu/sites/Architecture/ArchitectureChapter/1-Introduction%20to%20Software%20Architecture%20131118L.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/7-CMMI%20140103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/11-PSP-TSP%20140103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/11-PSP-TSP%20140103.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 106
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

sults, including productivity improvements of 25 percent or more, testing costs and schedule re-
ductions of up to 80 percent, and cost savings of 25-50 percent per software product release [Da-
vis 2003].

 Measurement and Analysis

While some early software projects used systems for predicting software costs, measurement was
done in different ways and was often based on definitions that were inconsistent. Without con-
sistent practices for measurement, no clear, quantitative picture of software development capabili-
ties was possible, nor was there any way to compare products and processes. Therefore, a stand-
ard and reliable set of measures that would help acquisition program managers and software
development contractors alike was an early priority for the SEI. In response to the DoD’s 1991
Software Technology Strategy, the SEI agreed to lead the development of a set of core measures
to “help the DoD plan, monitor, and manage its internal and contracted software development
projects” [Carleton 1992]. The resulting definition frameworks made it possible for organizations
to use measures that best matched their processes and infrastructure while benefiting from a
standard way of describing the operational definitions in detail.

Once the definition frameworks were developed, the SEI began work on the problem of helping
organizations decide what was useful to measure, having realized that many reports could be gen-
erated that had little to no impact on decision making within the organization. The SEI began to
investigate the goal-question-metric method for aligning measurement with information needs in
the organization [Basili 1984]. The SEI modified the approach to include explicit consideration of
the indicator (or output) of the measurement activity that would be used by decision makers, thus
creating the goal-question-indicator-measure (GQ(I)M) method.

Substantial work followed on the application of Six Sigma analytical techniques to software engi-
neering [Penn 2007]. The Six Sigma connection provided a rich set of tools as well as a “brand”
that already had roots in many organizations, which facilitated its adoption. The work has further
evolved to incorporate techniques used in Six Sigma to help improve estimates developed early in
the DoD acquisition lifecycle.

The SEI’s management work has had a global impact: use of its models and processes has been
documented in 74 countries across the globe and on every continent except Antarctica. Further,
SEI software engineering process techniques allow companies to outpace typical industry perfor-
mance in terms of the quality and predictable delivery of the software they develop. Productivity
improvements of 25 percent or more have been demonstrated, along with testing cost and sched-
ule reductions of up to 80 percent, and cost savings of about 25-50 percent per software product
release. The 2009 book Software Engineering Best Practices: Lessons from Successful Projects in
the Top Companies [Jones 2009] ranked TSP and CMMI as “top software engineering practices”
in terms of enabling superior software development performance. Beyond improving development
performance, the SEI’s management work has provided the framework for increased operational
resilience and better management of risks. Those working on complex systems use SEI manage-
ment techniques to create more accurate and precise cost estimations, improve insight into the
causes of failure, increase reliability for fielded systems with lower total cost of ownership, and
understand early warning signs of cost, schedule, or quality concerns.

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/12-Measurement%20140103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/13-GQIM%20140103.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 107
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 References

[Averill 1993] Averill, Edward; Byrnes, Paul; Dedolph, Michael; Maphis, John; Mead, Maphis; &
Puranik, Rajesh. Software Capability Evaluation (SCE) Version 1.5 Method Description
(CMU/SEI-93-TR-017). Software Engineering Institute, Carnegie Mellon University, 1993.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11921

[Barbacci 1985] Barbacci, M. R.; Habermann, A. N.; & Shaw, M. “The Software Engineering In-
stitute: Bridging Practice and Potential.” IEEE Software 2, 6 (November 1985): 4-21.

[Basili 1984] Basili, V. & Weiss, D. A. “Methodology for Collecting Valid Software Engineering
Data.” IEEE Transactions on Software Engineering 10, 3 (November 1984): 728-738.

[Bernard 2005] Bernard, Thomas; Gallagher, Brian; Bate, Roger; & Wilson, Hal. CMMI Acquisi-
tion Module (CMMI-AM), Version 1.1 (CMU/SEI-2005-TR-011). Software Engineering Institute,
Carnegie Mellon University, 2005. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=7665

[Boehm 1981] Boehm, Barry. Software Engineering Economics. Prentice-Hall, 1981 (ISBN
0138221227).

[Caralli 2010] Caralli, Richard; Allen, Julia; Curtis, Pamela; White, David; & Young, Lisa. CERT
Resilience Management Model, Version 1.0 (CMU/SEI-2010-TR-012). Software Engineering In-
stitute, Carnegie Mellon University, 2010. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=9479

[Carleton 1992] Carleton, Anita; Park, Robert; Bailey, Elizabeth; Goethert, Wolfhart; Florac, Wil-
liam; & Pfleeger, Shari. Software Measurement for DoD Systems: Recommendations for Initial
Core Measures (CMU/SEI-92-TR-019). Software Engineering Institute, Carnegie Mellon Univer-
sity, 1992. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11675

[CMMI 2010a] CMMI Product Team, CMMI for Development, Version 1.3 (CMU/SEI-2010-TR-
033). Software Engineering Institute, Carnegie Mellon University, 2010. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661

[CMMI 2010b] CMMI Product Team, CMMI for Services, Version 1.3 (CMU/SEI-2010-TR-034).
Software Engineering Institute, Carnegie Mellon University, 2010. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?AssetID=9665

[Curtis 2003] Curtis, William; Hefley, William; & Miller, Sally. People Capability Maturity
Model (P-CMM), Version 2.0, Second Edition (CMU/SEI-2009-TR-003). Software Engineering
Institute, Carnegie Mellon University, 2009. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=9071

[Davenport 2005] Davenport, Thomas. “The Coming Commoditization of Processes.” Harvard
Business Review 83, 6 (June 2005): 101-108.

https://collaboration.sei.cmu.edu/sites/SEIhistory/References%20Full%20Text/%5bBarbacci%201985%5d.pdf
https://collaboration.sei.cmu.edu/sites/SEIhistory/References%20Full%20Text/%5bBarbacci%201985%5d.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9479
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9479
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9071
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9071
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11921
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=7665
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=7665
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11675
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=9665
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=9665

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 108
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Davis 2003] Davis, Noopur & Mullaney, Julia. The Team Software Process (TSP) in Practice: A
Summary of Recent Results (CMU/SEI-2003-TR-014). Software Engineering Institute, Carnegie
Mellon University, 2003. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6675

[DoD 1982] Department of Defense. Report of the DoD Taskforce on Software Problems (Stock
No. ADA123449). National Technical Information Service, 1982.www.dtic.mil/docs/cita-
tions/ADA123449

[Druffel 1983] Druffel, Larry E.; Redwine, Samuel T. Jr.; & Riddle, William E. “The STARS
Program: Overview and Rationale.” IEEE Computer 16, 11 (November 1983): 21-29.

[Fowler 1990] Fowler, P. & Rifkin, S. Software Engineering Process Group Guide (CMU/SEI-
90-TR-24.) Software Engineering Institute, Carnegie Mellon University, 1990. http://re-
sources.sei.cmu.edu/asset_files/TechnicalReport/1990_005_001_15881.pdf

[Herbsleb 1997] Herbsleb, James; Zubrow, David; Goldenson, Dennis; Hayes, Will; & Paulk,
Mark. “Software Quality and the Capability Maturity Model.” Communications of the ACM 40, 6
(June 1997): 30-40.

[Humphrey 1985] Humphrey, W. S. “The IBM Large-Systems Software Development Process:
Objectives and Direction.” Large-System Software Development 24, 2 (1985): 76.

[Humphrey 1988] Humphrey, W. S. A Discipline for Software Engineering. Addison-Wesley,
1988 (ISBN:0201546108).

[Humphrey 1989] Humphrey, Watts S. Managing the Software Process. Addison-Wesley Profes-
sional, 1989 (ISBN: 0201180952). http://resources.sei.cmu.edu/library/asset-view.cfm?as-
setID=30884

[Humphrey 2000] Humphrey, Watts. The Team Software Process (TSP) (CMU/SEI-2000-TR-
023). Software Engineering Institute, Carnegie Mellon University, 2000. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=5287

[Jones 2009] Jones, Capers. Software Engineering Best Practices: Lessons from Successful Pro-
jects in the Top Companies. McGraw-Hill, 2009 (ISBN 007162161X).

[Kitson 1993] Kitson, David H. & Masters, Stephen M. “An Analysis of SEI Software Process
Assessment Results 1987-1991.” Proceedings of the 15th International Conference on Software
Engineering (ICSE). Baltimore, Maryland, May 17-21, 1993. IEEE Computer Society/ACM
Press, 1993

[Paulk 1993] Paulk, Mark; Curtis, William; Chrissis, Mary Beth; & Weber, Charles. Capability
Maturity Model for Software (Version 1.1) (CMU/SEI-93-TR-024). Software Engineering Insti-
tute, Carnegie Mellon University, 1993. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=11955

[Penn 2007] Penn, M. L.; Siviy, Jeannine; & Stoddard, Robert W. CMMI and Six Sigma: Partners
in Process Improvement. Addison-Wesley Professional, 2007. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?assetID=30452

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6675
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5287
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5287
http://re-sources.sei.cmu.edu/asset_files/TechnicalReport/1990_005_001_15881.pdf
http://re-sources.sei.cmu.edu/asset_files/TechnicalReport/1990_005_001_15881.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?as-setID=30884
http://resources.sei.cmu.edu/library/asset-view.cfm?as-setID=30884
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=11955
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=11955

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 109
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[SEI 1995] A Systems Engineering Capability Maturity Model, Version 1.1 (CMU/SEI-95-MM-
003). Software Engineering Institute, Carnegie Mellon University, 1995. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=12291

[SGMM 2011] SGMM Team, Smart Grid Maturity Model, Version 1.2: Model Definition
(CMU/SEI-2011-TR-025). Software Engineering Institute, Carnegie Mellon University, 2011.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10035

[Zubrow 1994] Zubrow, David; Hayes, William; Siegel, Jane; & Goldenson, Dennis. Maturity
Questionnaire (CMU/SEI-94-SR-007). Software Engineering Institute, Carnegie Mellon Univer-
sity, 1994. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12099

[Zubrow 2003] Zubrow, David, CMMI Adoption Trends, 2003. http://www.sei.cmu.edu/li-
brary/abstracts/news-at-sei/feature14q03.cfm

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12291
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12291
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10035
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12099
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12099
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12099

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 110
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 The Capability Maturity Model for Software

 The Challenge: Consistent and Predictable Management of Software
Development.

In 1986, there was a general realization in the DoD and among defense contractors that certain
software engineering practices produced working software with increased consistency. However,
relatively few practitioners recognized these largely undocumented practices. Most companies
had established their own practices through experience, but the importance that software project
planning and tracking, commitment management, quality management, and configuration man-
agement practices have in successfully managing software development—and the need for organi-
zational support to perform these practices effectively—was not broadly appreciated. Further-
more, software tools supporting such activities were often developed by the organization and
displayed the idiosyncrasies particular to that organization. Frequently, the tool choice dictated
the defining and interaction of the processes. Nevertheless, examples of successful software de-
velopment programs did occur and the recognition that software could be managed by a defined
and measured process was reflected in an expanding body of literature by leading authors.

The DoD identified the management of the software component of programs as a major problem
area [DoD 1982], and the DoD STARS strategy envisioned a managed process well supported by
automated tools [Druffel 1983].

 A Solution: The Capability Maturity Model for Software

In response to the DoD need, the SEI strategic plan identified the management of the software de-
velopment process—both by DoD program offices and defense contractors—as a fundamental fo-
cus of the SEI [Barbacci 1985]. The SEI recruited a retiring executive from IBM who had been
instrumental in creating and managing IBM efforts toward greater software quality and predicta-
bility and began work to define a process management framework in 1986. Shortly thereafter, the
Air Force program manager asked the SEI to conduct a study of “best practices.” The study be-
came key to the SEI’s efforts to define and implement its process management framework. Sev-
eral workshops were conducted with leading software professionals in the DoD, defense industry,
commercial industry, and academia to develop a consensus on the practices that consistently lead
to improved software development. To help organizations determine how well their work stacked
up against these practices, the SEI produced a Maturity Questionnaire [Humphrey 1988]. Re-
sponse to this questionnaire was overwhelmingly positive, both from the DoD and the defense in-
dustry.

Initially, the questionnaire identified a five-level model of organizational maturity based on the
implementation of software process management principles [Humphrey 1989]. After assisting
several organizations with their assessments and subsequent improvement efforts, the SEI pro-
duced a guide for how organizations might manage that process [Fowler 1990]. As the community
began to adopt these ideas, they expressed a need for a more precise definition of the practices
and the underlying model.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 111
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

The SEI developed a more explicit model with practices focused on establishing a richer set of
constructs in which to place and organize the practices within each maturity level. One such con-
struct was the “key process area” with its goals and key
practices (another was the “common features”). The key
process areas were identified through three sources: (1)
problem areas and practices associated with each ma-
turity level [Humphrey 1989], (2) multiple practitioner
community reviews and workshops, and (3) statistical
analyses of both assessment and questionnaire data (e.g.,
could the results of the latter predict the former?). Key
process areas also became a mechanism for reporting
and rating the results of an assessment and setting tar-
gets for process improvement and would serve as a basis
for developing and updating the questionnaire, which
would now serve more of a diagnostic purpose.

As a result of these activities, the SEI published the
Software Capability Maturity Model [Paulk 1993] and
updated the software process assessment and software
capability evaluation methods to make use of the ex-
plicit model.

 The Consequence: A Revolutionary
International Movement

With the publication of a practitioner community-vetted
explicit model of software development practice, world-
wide adoption grew each year for many years. The SEI
created user group meetings, later called Software Engi-
neering Process Group (SEPG) conferences, as a means
of interacting with the practitioner community and
broadly sharing lessons learned. Software Process Im-
provement Networks (SPINs), organizations or individu-
als regularly hosting meetings for co-located software
process improvement champions and the curious, grew
in number from two in 1992 to about fifty by 1998. The
number of formal assessments also grew dramatically.

The Software CMM thus launched the process improve-
ment movement, and other CMMs emerged [Bate 1994,
Konrad 1996] as other communities recognized their
value [Davenport 2005].

The View from Others

The model, created in 1987, has
become a worldwide standard for
software development processes
and is now embedded within many
government and industry organi-
zations. It has provided an objec-
tive basis for measuring progress
in software engineering and for
comparing one software pro-
vider’s processes to another’s.
This in turn has facilitated the
growth of offshore providers in In-
dia and China by commoditizing
software development processes
and making them more transpar-
ent to buyers.

– Thomas Davenport,
currently President’s
Distinguished Professor in
Management and
Information Technology at
Babson College [Davenport
2005]

The CMM is not a panacea and it
does not solve all problems. In
fact, a case could be made that the
CMM creates a few problems of its
own. In general, however, the su-
perimposition of the CMM struc-
ture on a good sized organization
has benefited it wherever that has
occurred.

– Capers Jones, Chief
Scientist Emeritus, Software
Productivity Research [CAI
2005]

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/3-AppraisalMethods140103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/3-AppraisalMethods140103.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 112
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 The SEI Contribution

The ideas in the CMM for Software were contributed by many people. Many of those ideas pre-
ceded the SEI effort, such as those from authors identified in the footnote, and from the IBM and
Texas Instruments experiences. In addition, as the SEI began to lead the effort, many software en-
gineers contributed from their own experiences. The SEI contribution was to provide leadership to
the community, assimilating and filtering the ideas into a consistent framework to produce the
documents that became a worldwide de facto standard for software process improvement. The
SEI designed a new structure for visualizing the evolution of practices, a seminal information ar-
chitecture that was mimicked and adapted over time. The process of providing leadership to the
community in a consensus-building effort has become the hallmark of SEI efforts.

The Software CMM eventually became superseded by CMMI, especially CMMI for Development
and CMMI for Acquisition. The SEI undertook initiatives to unite two disciplines and communi-
ties that sometimes acted at odds with each other and yet must work together to ensure product
and program success: namely, systems engineering and software engineering

 References

[Barbacci 1985] Barbacci, M. R.; Habermann, A. N.; & Shaw, M. “The Software Engineering In-
stitute: Bridging Practice and Potential.” IEEE Software 2, 6 (November 1985): 4-21 (ISSN:
0740-7459).

[Bate 1994] Bate, Roger; Reichner, Albert; Garcia-Miller, Suzanne; Armitage, James; Cusick,
Kerinia; Jones, Robert; Kuhn, Dorothy; Minnich, Ilene; Pierson, Hal; & Powell, Tim. A Systems
Engineering Capability Maturity Model, Version 1.0 (CMU/SEI-94-HB-004). Software Engineer-
ing Institute, Carnegie Mellon University, 1994. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=12037

[CAI 2005] Computer Aid Inc. “Focus on Capers Jones, Chief Scientist Emeritus, SPR, A CAI
State of the Practice Interview.” July 2005. http://www.compaid.com/caiinternet/casestudies/ca-
persjonesinterview1.pdf

[Davenport 2005] Davenport, Thomas. “The Coming Commoditization of Processes.” Harvard
Business Review. (June 2005): 101-108.

[DoD 1982] Department of Defense. Report of the DoD Taskforce on Software Problems (Stock
No. ADA123449). National Technical Information Service, 1982.www.dtic.mil/docs/cita-
tions/ADA123449

[Druffel 1983] Druffel, L. E.; Redwine, Jr., S. T.; Riddle, W. E. “The STARS Program: Overview
and Rationale.” Computer 16, 11 (November 1983): 21-29.

[Fowler 1990] Fowler, Priscilla & Rifkin, Stanley. Software Engineering Process Group Guide
(CMU/SEI-90-TR-024). Software Engineering Institute, Carnegie Mellon University, 1990.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11253

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12037
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12037
http://www.compaid.com/caiinternet/casestudies/ca-persjonesinterview1.pdf
http://www.compaid.com/caiinternet/casestudies/ca-persjonesinterview1.pdf

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 113
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Humphrey 1988] Humphrey, Watts; Sweet, William; Edwards, R.; LaCroix, G.; Owens, M.; &
Schulz, H. A Method for Assessing the Software Engineering Capability of Contractors
(CMU/SEI-87-TR-023). Software Engineering Institute, Carnegie Mellon University, 1988.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10345

[Humphrey 1989] Humphrey, Watts S. Managing the Software Process. Addison-Wesley Profes-
sional, 1989 (ISBN: 0201180952).

[Konrad 1996] Konrad, M.; Chrissis, M. B.; Ferguson, J.; Garcia, S.; Hefley, B.; Kitson, D.; &
Paulk, M. “Capability Maturity Modeling at the SEI.” Software Process: Improvement and Prac-
tice 2, 1 (March 1996): 21-34.

[Paulk 1993] Paulk, Mark; Curtis, William; Chrissis, Mary Beth; & Weber, Charles. Capability
Maturity Model for Software (Version 1.1) (CMU/SEI-93-TR-024). Software Engineering Insti-
tute, Carnegie Mellon University, 1993. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=11955

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10345

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 114
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Appraisal Methods

 The Challenge: Predicting Software Engineering Performance

As the importance of software grew substantially in DoD procurements, so did the need for evalu-
ating software contractors’ abilities to competently perform on software engineering contracts.
Meanwhile, a team at IBM was also investigating its own software engineering performance and
noticed that different IBM sites varied in their levels of predictable performance. To find out why,
people began to collect the factors contributing to success and compare sites on this basis, which
enabled them to identify issues to tackle and best practices to emulate. A structured approach be-
gan to emerge from this work that allowed for site visits for gathering relevant information, iden-
tifying opportunities, and establishing priorities for improvement. As problems with software con-
tractors came to a head in the mid-1980s, the DoD turned to the SEI.

 A Solution: Assessing the Capability of Contractors

The DoD asked the SEI to use its “objective broker” status to help figure out how to fairly and ef-
fectively determine a contractor’s likely performance based on that contractor’s capability when
producing software. In response, the SEI began to increase its role in software process assess-
ments, drawing on the work at IBM and other organizations.

In 1986, the SEI work had begun in earnest towards establishing a formal process for evaluating
potential software performance, when the U.S. Air Force and MITRE Corp. asked it to develop a
site assessment method and related model that could be used to assess commercial and govern-
ment software organizations. SEI experts began concentrating on a process that would facilitate
objective and consistent assessments of the ability of potential contractors to develop software in
accordance with up-to-date software engineering methods.

In 1987, A Method for Assessing the Software Engineering Capability of Contractors was pub-
lished [Humphrey 1988]. The primary goal was to provide a standardized, publicly available
method that could be periodically reviewed and modified. The method was a structured assess-
ment approach intended to augment contractor evaluation methods in use at the time. The method
document included a Maturity Questionnaire, a five-level Process Maturity Framework, and a
brief set of guidelines for conducting an assessment and evaluating the results.

Even before the Maturity Questionnaire was formally published, the SEI technical staff recog-
nized the need for a more detailed description of the assessment process and, in July 1987, pub-
lished a preliminary report on conducting assessments [Humphrey 1987]. It is interesting to note
that this report envisioned internal assessments for process improvement and evaluation assess-
ments conducted by DoD procurement personnel. This integration of process assessment methods
soon dissolved, resulting in two similar but separate methods and constituencies: Software Pro-
cess Assessment and Software Capability Evaluation. Each of the method descriptions had re-
quirements for team selection and training, planning, conducting on-site activities, and reporting
results.

Software Process Assessments (SPAs), originally called SEI-Assisted Assessments, were first de-
scribed in 1989. The SPA was used to identify an organization’s major problems and engage

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 115
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

opinion leaders and senior managers in the change process. The goal was to prioritize areas for
improvement and to provide guidance on how to make those improvements. This more structured
method was originally performed exclusively by SEI staff. Later, “SPA Vendors” were trained to
perform the assessments; this small community of vendors later grew into a worldwide program
of licensed assessors.

Software Capability Evaluations (SCEs) were conducted during the same time period, but with
different goals in mind. They were used primarily to evaluate sources and contractors by gaining
insight into the software process capability of a supplier organization and were intended to con-
tribute to better acquisition decisions, improve subcontractor performance, and provide insight for
a purchasing organization. SCEs were used in software acquisition as a discriminator to select
suppliers, for contract monitoring, and for awarding incentives [SCE 1993].

SPAs and SCEs sometimes produced inconsistent results, which led the SEI to develop the CMM
Appraisal Framework (CAF) as an appraisal method standard to address the issue [Masters 1995].
With the publication of the Capability Maturity Model (CMM) for Software, the SEI released
CAF-compliant methods for assessment (CBA IPI [Dunaway 1996]) and evaluation (SCE V3.0
[Byrnes 1996]).

At the turn of the millennium, representatives in government and industry asked for the develop-
ment of an integrated model that would improve the usability of maturity models by integrating
many different models into one framework. The Capability Maturity Model Integration (CMMI)
team published the appraisal requirements for CMMI (ARC), ushering in a new era for appraisals
[CMMI 2001]. The Standard CMMI Appraisal Method for Process Improvement (SCAMPI) was
developed [AMIT 2001], along with the specification for two other appraisal classes. Later the
SEI developed SCAMPI B and C as a 100 percent community-funded project [Hayes 2005]. Fac-
tors that might influence an organization’s choice of a SCAMPI (A, B, or C) include cost, sched-
ule, accuracy, efficiency, and the desired results. SCAMPI continues to have a wide range of uses,
including internal process improvement and external capability determinations.

 The Consequence: Reduced Risk in Selecting Contractors

The SEI work on assessing/evaluating contractors led the DoD and other government acquisition
organizations to change their criteria for selecting contractors. They now consider the discipline in
the contractors’ software development and how well they follow their defined processes. As a re-
sult, the DoD and others have reduced their risk in acquiring software.

Having a published, consistent method enables contractors to prepare in advance for an assess-
ment, and the feedback from assessments helps organizations identify areas where they should
improve their own capabilities. The objective evidence from the assessments helps to build their
organization’s commitment to improvement and allows comparisons of results with those of other
organizations. Trends and results can be tracked through the process Maturity Profile, where ap-
praisal results are aggregated and published periodically. The SEI published benchmarks that pro-
vided in-depth analysis of data and trends from organizations participating in assessments [Kitson
1993, Hayes 1995]. Additionally, the SEI found that assessments were viewed to be accurate and
useful in guiding subsequent process improvement efforts [Herbsleb 1997].

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-The%20Capability%20Maturity%20Model%20for%20Software%2014103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/7-CMMI%20140103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/4-%20Maturity%20Profile%20140103.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 116
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Ultimately, the SEI’s work in establishing process appraisal methods has allowed the armed ser-
vices to improve their ability to serve the national interest by awarding contracts to the software
contractors with the best capability.

 The SEI Contribution

The appraisal methods published by the SEI were all developed in partnership with government
and industry. The formality of the appraisal methods—and the models on which they are based—
led to repeatable, understandable results that have helped industry and government recognize the
value of process improvement. As a result, organizations have been able to increase the con-
sistency of their software development performance and, presumably, the quality of their soft-
ware.

The SEI program in which “SPA Vendors” were trained to perform Software Process Assess-
ments was first limited to a small community of vendors. This program later grew into a world-
wide program as the SEI assessment methods evolved, along with the SEI licensing paradigm.
This SEI activity thus spawned a new industry that still flourishes today.

The commercialization of process improvement using primarily CMM and CMMI-based ap-
praisal methods has helped to highlight one of the many contributions of the SEI and Carnegie
Mellon to the software engineering community. CMM/CMMI maturity levels have become a de
facto international standard. The SEI’s contribution includes creating the profession of SCAMPI
Lead Appraisers/process improvement professionals. This was done through certification (500 as
of 2013) and based on the SCAMPI Lead Appraiser Body of Knowledge (SLA BOK) [Masters
2007].

 References

[AMIT 2001] Members of the Assessment Method Integrated Team. Standard CMMI Appraisal
Method for Process Improvement (SCAMPI), Version 1.1: Method Definition Document
(CMU/SEI-2001-HB-001). Software Engineering Institute, Carnegie Mellon University, 2001.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5325

[Byrnes 1996] Byrnes, Paul & Phillips, Michael. Software Capability Evaluation Version 3.0
Method Description (CMU/SEI-96-TR-002). Software Engineering Institute, Carnegie Mellon
University, 1996. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12503

[CMMI 2001] CMMI Product Team. Appraisal Requirements for CMMI, Version 1.1 (ARC, V1.1)
(CMU/SEI-2001-TR-034). Software Engineering Institute, Carnegie Mellon University, 2001.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5781

[Dunaway 1996] Dunaway, Donna & Masters, Steve. CMM-Based Appraisal for Internal Process
Improvement (CBA IPI): Method Description (CMU/SEI-96-TR-007). Software Engineering In-
stitute, Carnegie Mellon University, 1996. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=12533

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5325
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12503
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5781

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 117
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Hayes 1995] Hayes, William & Zubrow, David. Moving On Up: Data and Experience Doing
CMM-Based Process Improvement (CMU/SEI-95-TR-008). Software Engineering Institute, Car-
negie Mellon University, 1995. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=12353

[Hayes 2005] Hayes, William; Miluk, Gene; Ming, Lisa; Glover, Margaret; & Members of the
SCAMPI B and C Project. Handbook for Conducting Standard CMMI Appraisal Method for Pro-
cess Improvement (SCAMPI) B and C Appraisals, Version 1.1 (CMU/SEI-2005-HB-005). Soft-
ware Engineering Institute, Carnegie Mellon University, 2005. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?AssetID=7281

[Herbsleb 1997] Herbsleb, James; Zubrow, David; Goldenson, Dennis; Hayes, Will; & Paulk,
Mark. “Software Quality and the Capability Maturity Model.” Communications of the ACM 40, 6
(June 1997): 30-40.

[Humphrey 1987] Humphrey, Watts & Kitson, David. Preliminary Report on Conducting SEI-
Assisted Assessments of Software Engineering (CMU/SEI-87-TR-016). Software Engineering In-
stitute, Carnegie Mellon University, 1987. http://resources.sei.cmu.edu/library/asset-view.cfm?as-
setID=10307

[Humphrey 1988] Humphrey, Watts; Sweet, William; Edwards, R.; LaCroix, G.; Owens, M.; &
Schulz, H. A. Method for Assessing the Software Engineering Capability of Contractors
(CMU/SEI-87-TR-023). Software Engineering Institute, Carnegie Mellon University, 1988.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10345

[Kitson 1993] Kitson, David H. & Masters, Stephen M. “An Analysis of SEI Software Process
Assessment Results 1987-1991.” Proceedings of the 15th International Conference on Software
Engineering. ICSE, Baltimore, Maryland, May 17-21, 1993. IEEE Computer Society/ACM Press,
1993.

[Masters 1995] Masters, Steve & Bothwell, Carol. CMM Appraisal Framework, Version 1.0
(CMU/SEI-95-TR-001). Software Engineering Institute, Carnegie Mellon University, 1995.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12323

[Masters 2007] Masters, Steve; Behrens, Sandra; Mogilensky, Judah; & Ryan, Charles. SCAMPI
Lead Appraiser Body of Knowledge (SLA BOK) (CMU/SEI-2007-TR-019). Software Engineering
Institute, Carnegie Mellon University, 2007. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=8455

[SCE 1993] Software Capability Project. Software Capability Evaluation (SCE) Version 1.0 Im-
plementation Guide (CMU/SEI-93-TR-018). Software Engineering Institute, Carnegie Mellon
University, 1993. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11935

http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=12353
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=12353
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=7281
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=7281
http://resources.sei.cmu.edu/library/asset-view.cfm?as-setID=10307
http://resources.sei.cmu.edu/library/asset-view.cfm?as-setID=10307
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10345
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12323
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8455
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8455

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 118
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Maturity Profile

 The Problem: Lack of Data on Use of SEI Models and Appraisal Results

Although the SEI had developed a model for assessing contracting risk, leading to the CMM for
Software and CMMI, there initially was no data available on the adoption of the models or the re-
sults of the appraisals based on the models.

 A Solution: Community Maturity Profile

The initial approach to addressing the problem was publication of a report on the first 10 assess-
ments [Humphrey1989]. A second report summarized the history of results from 59 assessments
conducted from 1987 through 1991 [Kitson 1992]. While these reports were generally found to be
helpful, the SEI realized the community wanted more information about the process maturity of
the software engineering community—a maturity profile.

To satisfy this need for improved information, the SEI needed to take a number of steps. First, the
reports needed to be produced as a matter of routine, not as an afterthought. Second, there needed
to be some standardization of the results and contextual information collected and reported. Third,
the SEI needed to develop the processes, procedures, and infrastructure for having results reported
to it by those performing assessments. Finally, the SEI needed to develop the method for analyz-
ing the assessment data.

To encourage the reporting of assessment results, the SEI established a routine schedule, in 1992,
for producing a summary and analysis of the accumulated assessment results. Providing updated
information of value back to the community motivated those conducting assessments to turn in
their results to the SEI. As more results were turned in, more analyses could be conducted. The
ideas for those analyses came from members of the community as well as SEI researchers. As the
volume of data started to grow and the use of the Maturity Profile grew, it became clear that the
reporting needed to be standardized and additional information needed to be collected to support
the desired analyses. The new data included characteristics of the organization, the team conduct-
ing the assessment, the assessment itself, and greater detail about the results.

The SEI created a database and a series of internal reports and processes for managing the data,
reporting assessment results, and interacting with those reporting results. Creating the database
was a major step toward enabling the routine reporting of results and tracking of trends in organi-
zations and the community over time. Furthermore, tracking trends in organizations required a set
of business rules for persistent identification in light of mergers and acquisitions. The SEI also de-
veloped a set of processes and procedures for tracking the conduct and reporting of assessments.
This initially started as a reconciliation process where those reporting assessments and the SEI
would compare their records. Eventually, the SEI required registration of the appraisal plans in
advance of conducting the appraisal. The appraisal results were then required to be reported
within 30 days.

The content of the Maturity Profile evolved over the years. The primary profile was the simple
display of the percentage of organizations at each maturity level. Over time, an increasing number
of data subsets for maturity profiles were reported. Also tracked and reported was the time to

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-The%20Capability%20Maturity%20Model%20for%20Software%2014103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-The%20Capability%20Maturity%20Model%20for%20Software%2014103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/7-CMMI%20140103.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 119
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

move from maturity level to maturity level, as well as those regressing, that is, those assessed at a
lower maturity level.

The Community Maturity Profile helped to spur a closer connection between the SEI and its part-
ners who performed assessments. The summarization and routine reporting of updated infor-
mation was seen as a valuable resource that the SEI provided back to its partners and the commu-
nity. As a result, the partners became more diligent about reporting assessment information to the
SEI. Similarly, the SEI took its obligation to produce the profile on a semi-annual basis seriously.

 The Consequence: Reliable Source of Data for the Community

The Community Maturity Profile became the principal source of information regarding the adop-
tion of CMM and CMMI and the state of the community in terms of process improvement
[Zubrow 2003]. The profile and its data have been used in a myriad of organizational settings to
benchmark current process maturity and to develop business cases for process improvement. It
has also been used as a basis for academic research and incorporated into courses on software en-
gineering and process improvement.

The publication of this valuable information is unique among process improvement methods.
There are no other methods with a similar depth and breadth of information regarding their adop-
tion and results. The information in the profile has been incorporated into many publications and
presentations as the authoritative source on the status of organizations engaged in CMM/CMMI-
based process improvement as well as trends in the community, such as how long it takes to move
from one maturity level to the next.

 The SEI Contribution

The SEI developed the processes, procedures, and a database that enabled it to publish the Com-
munity Maturity Profile as a routine report summarizing data reported from organizations that
have conducted CMMI-based appraisals. The process for collecting the data and the profile itself
evolved over the years to provide a better and more complete depiction of the status and trends
stemming from the of CMM/CMMI. The Community Maturity Profile is the primary source of
information within the software process improvement community regarding the adoption and use
of CMM/CMMI.

 References

[Humphrey 1989] Humphrey, Watts; Kitson, David; & Kasse, Timothy. The State of Software En-
gineering Practice: A Preliminary Report (CMU/SEI-89-TR-001). Software Engineering Insti-
tute, Carnegie Mellon University, 1989. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=10851

[Kitson 1992] Kitson, David & Masters, Steve. An Analysis of SEI Software Process Assessment
Results 1987-1991 (CMU/SEI-92-TR-024). Software Engineering Institute, Carnegie Mellon Uni-
versity, 1992. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11709

http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=10851
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=10851

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 120
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Zubrow 2003] Zubrow, David. “CMMI Adoption Trends.” news@sei. Software Engineering In-
stitute, Carnegie Mellon University, 2003. http://www.sei.cmu.edu/library/abstracts/news-at-
sei/feature14q03.cfm

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 121
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 The People Capability Maturity Model

 The Challenge: Assessing and Improving Workforce Capability

Following successful implementation of the CMM for
Software, organizations discovered that they could quan-
tify how well they developed their products, but could
not tell if they were utilizing and deploying their em-
ployees to maximum efficiency and uniform productiv-
ity. Organizational competency and capability were
driving contractual commitments and return on invest-
ment, and organizations asked for a model similar to the
CMM to assess and improve organizational competency
in the management of its human resources. The U.S.
Army, in particular, encouraged the SEI to address this
need and provided initial funding.

 A Solution: The People CMM
The SEI responded to this need by developing the Peo-
ple Capability Maturity Model. Since the demand for the
People CMM and its companion product suite was
driven by the success of the Software CMM, the People
CMM had its roots firmly planted in the SEI process
maturity framework. In addition, the SEI included best
practices in human capital management and the meas-
urement of organizational change.

In 1998, the People CMM and its companion courses
and appraisals were released after three years of devel-
opment and rigorous review [Hefley 1998]. While initial
funding to develop and test the People CMM was pro-
vided by the DoD, and early appraisals conducted with
the U.S. Army, later support and funding was primarily
provided by organizations providing products and ser-
vices not only to the DoD, but to other agencies within
the U.S. government, such as the Federal Emergency
Management Agency (FEMA). Other examples of fun-
ders are GDE Systems, Boeing, BAE Systems, Lock-
heed Martin, and Computer Sciences Corp.

When improvements guided by the People CMM are in-
itiated, they are sometimes perceived as a human re-
sources program. However, organizations have uni-
formly found the People CMM to be a general business
excellence model. The increasing focus on performance

The View from Others

Intel Information Technology (In-
tel IT) supports the computing
needs of over 80,000 employees in
more than 70 sites worldwide. In-
tel IT sources, designs, develops,
implements and maintains the
hardware, software and IT solu-
tions that enable the company to
operate efficiently. (page 132)

Intel IT decided that the People
CMM was the most appropriate
model for attaining its objectives
of developing a world-class work-
force and organization capabilities
for IT by strategically shaping its
future workforce and influencing
its partners and industry. (page
133)

Over the course of three years, In-
tel IT achieved many of its innova-
tion goals, including a 200 percent
increase in patents emerging from
the IT workforce, and solid im-
provements in employee feedback
about the organization’s leader-
ship and Great Place to Work
scores. (page 136)

– Jack Anderson, Chair,
Innovation Management
Working Group, Innovation
Value Institute (a consortium
founded by Intel of over 35
companies that have come
together to improve the IT
industry) [Curtis 2009] case
study

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-The%20Capability%20Maturity%20Model%20for%20Software%2014103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-The%20Capability%20Maturity%20Model%20for%20Software%2014103.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 122
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

improvement causes People CMM results to affect operational performance of units and the or-
ganization as a whole. The People CMM provides guidance that improves an organization’s abil-
ity to satisfy the identified business objectives by deploying a competent, capable workforce that
is executing and continuously improving its business processes.

In 2001, the People CMM was updated using lessons learned, change requests from users, input
from the SEI advisory board, and the latest research on organizational quality improvement. The
book, The People Capability Maturity Model, Guidelines for Improving the Workforce, was pub-
lished as part of the Addison-Wesley SEI Series [Hefley 2002]. It contains new guidance for users
as well as case studies from organizations using the model. The case studies identify a trend of
use in organizations providing products and services to the public; case studies include Novo
Nordisk IT/AS, Europe and Tata Consulting Services, India.

A second edition of the 2002 publication of the People CMM was released in 2010 [Curtis 2009].
This updated version has made no change to the model but has added more examples and explan-
atory subpractices. In addition, the front matter has been expanded to provide more guidance to
the reader and user, and new case studies added, some of which were written entirely by People
CMM customers. Newly titled People CMM, Second Edition, A Framework for Human Capital
Management, the book focuses on how the People CMM is being applied and by what types of
organizations. It contains seven new case studies: Boeing, Intel Information Technology, Pfizer
Worldwide Technology, Ericsson, Accenture, Club Mahindra, HCLT BPO, and Tata Consultancy
Services. While case studies provide an insight into the use of the People CMM as a guide and
demonstrate an organization’s journey as they mature, it must be noted that some specifics have
been omitted as they are considered competitive advantage.

 The Consequence: A Competent Workforce That Can Meet Business Goals

The People CMM clearly meets a perceived as well as stated need. Organizations have guidance
enabling them to improve their ability to satisfy their identified business objectives by deploying a
competent, capable workforce that is executing and continuously improving its business pro-
cesses.

In addition to DoD organizations, defense contractors, and other government agencies, national
and even international organizations have adopted the model as the basis for their improvement
efforts. Such organizations include the areas of business process outsourcing, hospitality, con-
struction, insurance, energy and utilities, banking and financial services, information technology,
consulting, pharmaceutical, software development, and management information systems.

The People CMM has also been used to support and sustain the attainment of CMMI maturity lev-
els by building competencies and a workforce that can successfully execute and manage organiza-
tional business processes. Use of the People CMM has now been verified in Europe, Asia, and
Australia as well as in North America.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 123
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 The SEI Contribution

As is the case with many other SEI efforts and all of the Capability Maturity Model efforts, the
SEI provided the vision and leadership for the creation of the People CMM and managed the pro-
cess. But the content was a community effort, with many experts from the international commu-
nity offering their perspectives during the initial development. The subsequent improvements in
2001 and 2010 were driven largely by the experiences of organizations that used the model and its
supporting materials.

 References

[Curtis 2009] Curtis, Bill; Hefley, William E.; & Miller, Sally A. People CMM: A Framework for
Human Capital Management, 2nd ed. Addison-Wesley Professional, 2010 (ISBN 032155390X).

[Hefley 1998] Hefley, William & Curtis, William. People CMM-Based Assessment Method De-
scription (CMU/SEI-98-TR-012). Software Engineering Institute, Carnegie Mellon University,
1998. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=13125

[Hefley 2002] Hefley, William E.; Miller, Sally A; & Curtis, Bill (2002). The People Capability
Maturity Model: Guidelines for Improving the Workforce. Addison-Wesley Professional, 2002
(ISBN 0-201-60445-0).

http://en.wikipedia.org/wiki/Addison-Wesley
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-201-60445-0
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=13125

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 124
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Managing Operational Resilience

 The Challenge: Delivering Essential Services in the Presence of Stress and
Disruption

Beginning in the late 1990s, the DoD faced a set of
problems shared with organizations in every sector—
U.S. federal government agencies, defense and commer-
cial industry, and academia—arising from increasingly
complex business and operational environments. Most
organizations continue to be constantly bombarded with
conditions and events that introduce stress and uncer-
tainty that may disrupt effective operation. Stress related
to operational resilience—the ability of an organization
to achieve its mission even under degraded circum-
stances—can come from many sources, including risks
and threats resulting from technology advances and the
increasing globalization of organizations and their sup-
ply chains.

All these demands conspire to force organizations to re-
think how they perform operational risk management
and how they address the resilience of high-value busi-
ness services and processes. The traditional, and typi-
cally compartmentalized, disciplines of security, opera-
tional continuity, and information technology (IT)
operations must be expanded to provide protection and
continuity strategies for high-value services and support-
ing assets that are commensurate with these new operat-
ing complexities.

 A Solution: Convergence of Operational
Risk Disciplines That Accelerated the
SEI’s Ability to Tackle Resilience

In 1999, the SEI released the Operationally Critical
Threat, Asset, and Vulnerability Evaluation (OCTAVE)
method for information security risk management.
OCTAVE provided a new way to look at information security risk from an operational perspec-
tive and asserted that operational (business) people are in the best position to identify and analyze
security risk. This effectively repositioned IT’s role in security risk assessment and placed the re-
sponsibility closer to the operations activity in the organization [Alberts 1999].

In October 2003, a group of 20 IT and security professionals from defense organizations, the fi-
nancial services sector, IT, and security services met at the SEI to begin building an executive-
level community of practice for IT operations and security. The desired outcome was to better
capture and articulate the relevant bodies of knowledge that enable and accelerate IT operational

The View from Others

Our comprehensive analysis of
business resilience management
models identified CERT-RMM as
the most promising model for use
within our enterprise due to pro-
moting convergence, modeling the
needs of a large enterprise, con-
sidering risks for both protecting
and sustaining assets, and its focus
on measuring and institutionaliz-
ing resilience processes.

– Nader Mehravari, former
director of Corporate
Business Resiliency
Strategic Initiative,
Lockheed Martin Corp.
[Caralli 2010, Ch. 7]

CERT-RMM helps us define the
processes by which we conduct in-
cident responses for security inci-
dents, including how we interact
with the other business units and
the CISO’s [chief information se-
curity officer’s] office for the re-
covery of evidence and continuity
of operations. [Joch 2013]

https://collaboration.sei.cmu.edu/sites/SecurityChapter/SecurityChapter/8-OCTAVE140101.docx
https://collaboration.sei.cmu.edu/sites/SecurityChapter/SecurityChapter/8-OCTAVE140101.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 125
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

and security process improvement. The bodies of knowledge identified included IT and infor-
mation security governance, audit, risk management, IT operations, security, project management,
and process management.

In December 2004, the SEI released a technical note titled Managing for Enterprise Security [Car-
alli 2004] that introduced operational resilience as the objective of security activities and began to
describe the convergence between security management,
business continuity management, and IT operations
management as essential for managing operational risk.
In March 2005, the SEI hosted a meeting with represent-
atives of the Financial Services Technology Consortium
(FSTC).16 The FSTC’s Business Continuity Standing
Committee was actively organizing a project to explore
the development of a reference model to help determine
an organization’s capability to manage operational resil-
ience as a follow-on to lessons learned in the aftermath
of Sept. 11, 2001. The respective efforts were clearly fo-
cused on solving the same problem: How can an organi-
zation predictably and systematically control operational
resilience through activities such as security and busi-
ness continuity?

In the following year, the SEI introduced the concept of
a process improvement model for managing operational
resilience, drawing heavily upon the SEI’s CMMI expe-
rience. The SEI continued to collaborate with the FSTC
and others to develop an initial framework and subse-
quent revisions, which resulted in the CERT Resilience
Engineering Framework in March of 2008 and v1.0 of
the CERT Resilience Management Model (CERT-
RMM) in March 2010 (followed shortly thereafter by
v1.1 of the CERT-RMM in book form [Caralli 2010a]
and a model description in a webinar [Caralli 2010b]).
The SEI also developed resilience training and helped
establish a CERT-RMM Users Group.17 The SEI is conducting research and developing resources
for measuring operational resilience, including guidance and templates that support organizations
in defining their measures and an addendum to CERT-RMM V. 1.1 that updates examples of
measures for the 26 process areas [Allen 2011].

16 The FSTC has since been incorporated into the Financial Services Roundtable

(http://www.fsround.org).

17 Information on SEI resilience work is available at http://www.cert.org/resilience, including links to
the training and the user group pages.

The View from Others

The CERT-RMM class provided
Lockheed Martin participants with
a solid framework for measuring
organizational and operational re-
silience, but the RMM Users
Group gave us a greater apprecia-
tion of the issues surrounding re-
silience. The diversity of perspec-
tives from industry, finance,
government, and education helped
to associate actual problems with
model constructs. Hearing about
the real world issues that other or-
ganizations had, and how they
conquered or planned to conquer
them, helped us to be better able to
support our own operational teams
and to establish a strategy for our
organization.

– Lynn Penn, Director
Enterprise Integration,
Lockheed Martin
Corporation

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/7-CMMI%20140103.docx
http://www.fsround.org
http://www.cert.org/resilience

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 126
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 The Consequence: Organizations Can Determine Their Capability to
Manage Resilience

Organizations in the DoD, the U.S. defense industrial base, U.S. federal civilian agencies, the fi-
nancial services sector, and academia have been using aspects of the CERT-RMM since 2009. It
has been applied to a wide range of problems; some applications are described in podcasts
(http://www.cert.org/podcasts). The range of applications includes
• assessing the capability of U.S. IT-based critical infrastructures to be resilient in the presence

of attack and the capability of external partners that provide parts of the DoD missions

• building an incident management capability in developing nations

• developing mission assurance planning guides for DoD commanders

• evaluating IT operations and security activities to identify potential improvements and to cap-
ture a pre-improvement baseline

• determining whether business continuity policy, when enacted, will produce the intended re-
sult

• determining if compliance with mandated regulations results in improved security

• assessing current software development processes to determine if they include software resili-
ence practices

• protecting personally identifiable information and eliminating its use where possible

• measuring operational resilience at strategic and tactical levels

 The SEI Contribution

The SEI role has been to help organizations institutionalize improved processes for managing op-
erational resilience and measure their benefit, demonstrating the value of converging operational
risk disciplines, and accelerating the transition of industrial experience to the broader community.
The CERT reputation and leadership role in the information security community and the SEI rep-
utation and leadership role in the process improvement community provide the foundation for this
work. The SEI has developed and is transitioning a credible, effective maturity model that allows
organizations to have justifiable confidence that they can provide essential services in the pres-
ence of disruption and stress and can return to normal operations in a reasonable period of time
following disruption.

 References

[Alberts 1999] Alberts, Christopher; Behrens, Sandra; Pethia, Richard; & Wilson, William. Oper-
ationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE) Framework, Version 1.0
(CMU/SEI-1999-TR-017). Software Engineering Institute, Carnegie Mellon University, 1999.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=13473

[Allen 2011] Allen, Julia & Curtis, Pamela. Measures for Managing Operational Resilience
(CMU/SEI-2011-TR-019). Software Engineering Institute, Carnegie Mellon University, 2011.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10017

http://www.cert.org/podcasts
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=13473

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 127
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Caralli 2004] Caralli, Richard. Managing for Enterprise Security (CMU/SEI-2004-TN-046).
Software Engineering Institute, Carnegie Mellon University, 2004. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?AssetID=7019

[Caralli 2010a] Caralli, Richard A.; Allen, Julia H.; & White, David W. CERT Resilience Man-
agement Model (CERT-RMM): A Maturity Model for Managing Operational Resilience. Addison-
Wesley Professional, 2010 (ISBN 0321712439).

[Caralli 2010b] Caralli, Richard A. “Transforming Your Resilience Management Capabilities:
CERT’s Resilience Management Model” (webinar). Software Engineering Institute, Carnegie
Mellon University, 2010. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=21924

[Joch 2013] Joch, A. “Operational Resilience: Bringing Order to a World of Uncertainty.” Federal
Computer Week, July 8, 2013. http://fcw.com/articles/2013/07/08/exectech-operational-resili-
ence.aspx

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=21924
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=7019
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=7019
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=21924
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=21924

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 128
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Capability Maturity Model Integration

 The Challenge: Developing a Single Framework for Process Improvement

The success of the various capability maturity models and supporting appraisal methods led the
community of users, both in DoD and in industry, to seek a more integrated approach to process
improvement. The DoD asked the SEI to develop a
model (and associated appraisal method) that would
merge the best practices for software development, sys-
tems engineering, and acquisition into a single frame-
work that organizations could use for enterprise-wide
process improvement initiatives.

 A Solution: The Capability Maturity
Model Integration

To improve on the Software Capability Maturity Model
(SW-CMM) released in 1993 and subsequent models fo-
cused on systems engineering and integrated product
and process development, a team of best practice and
process improvement experts from government, indus-
try, and the SEI developed the Capability Maturity
Model Integration (CMMI) product suite. The update in-
cluded new process areas, updates to best practices, and
generic goals and practices that bring more attention to
the planning, definition, measurement, and management
of systems and software engineering processes. A con-
tinuous representation was also created, in addition to
the traditional staged representation, for organizations that wanted to focus on improvement in
certain process areas instead of pursuing an overall maturity rating.

In a capability maturity model, a continuous representation provides many benefits, including a
greater degree of granularity in planning and tracking organizational process improvement, and a
more revealing look at the trouble spots—and strengths—in organizational practices [CMMI
2010a]. In the continuous representation of CMMI, process areas are organized into categories,
such as Process Management, Project Management, Engineering, and Support. Based on its busi-
ness objectives, an organization selects the process areas in which it wants to improve (e.g., re-
quirements development, risk management, and supplier agreement management) and to what de-
gree. Instead of focusing on maturity levels, the organization uses capability levels (from 0 to 5)
to measure improvement relative to each process area. Achievement of a capability level is based
on achieving the appropriate specific and generic practices of the selected process area.

In 2002, the CMMI Product Team published the first comprehensive CMMI framework, includ-
ing models, training, and an appraisal method, which incorporated software, systems engineering,
integrated product and process development, and supplier sourcing [CMMI 2002]. The model was
rapidly adopted by industry.

The View from Others

Our CMMI Level 5 rating puts us
ahead of many of our competitors.
This rating demonstrates to our
customers that we use proven pro-
cesses when performing on con-
tracts—and that we are committed
to a rigorous process improvement
plan to continue to up the ante.

– Tina Schechter, vice
president, Mission Success
& Information Technology,
for Lockheed Martin MS2
and executive champion for
the business unit’s CMMI
initiative
[Lockheed-Martin 2009]

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-The%20Capability%20Maturity%20Model%20for%20Software%2014103.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 129
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

4.6.2.1 CMMI Constellations

For CMMI Versions 1.2 and 1.3, improvements were made to the CMMI framework architecture
to accommodate the need for multiple CMMI models, while maximizing the use of goals and
practices across the different CMMI models. This gave rise to the idea of constellations, in which
CMMI models would be derived from careful selections from a larger repository of process areas
and practices. As a result, during 2006-2009, CMMI models were developed for product and ser-
vice development [CMMI 2010a], service establishment, management, and delivery [CMMI
2010b], and product and service acquisition [CMMI 2010c]. Each of these CMMI models was de-
signed to be used in concert with the others, making it easier for organizations to pursue enter-
prise-wide process improvement. The Standard CMMI Appraisal Method for Process Improve-
ment (SCAMPI) Method Definition Document [SCAMPI 2011] and training materials supported
use of the models.

CMMI for Development (CMMI-DEV). CMMI for Development was the focus of the initial
CMMI framework and was first released in 2002. It was updated in 2006 and again in 2010 with
the release of the Version 1.3 model (CMMI-DEV, V1.3). CMMI-DEV describes best practices
for the development and maintenance of products and services across their lifecycle. CMMI-DEV
combines essential bodies of knowledge, such as software and systems engineering, and dovetails
with other process improvement methods that might be used elsewhere in an organization, such as
the SEI’s Team Software Process (TSP), ISO 9000 [SEI 2009], Six Sigma, and Agile. CMMI-
DEV can be used to guide process improvement across a project, division, or organization to
lower costs, improve quality, and deliver products and services on time. It is employed by organi-
zations from many industries, including aerospace, banking, computer hardware, software, de-
fense, automobile manufacturing, and telecommunications. For Version 1.3, high maturity process
areas were significantly improved to reflect industry best practices, guidance was added for or-
ganizations that use Agile methods, and engineering practices and terminology were updated to
reflect best practices related to specifying, documenting, and evaluating software architecture.

CMMI for Acquisition (CMMI-ACQ). CMMI for Acquisition was first realized as an independent
model—the Software Acquisition CMM (SA-CMM) model—in 2002. In 2005, when the SEI and
the CMMI Steering Group were planning development of CMMI for Development, Version 1.2,
General Motors (GM) approached the SEI about developing a CMMI model that would address
acquisition best practices. The SEI had already been directed by the DoD to upgrade the SA-
CMM model to be compatible with CMMI. As a recognized leader in IT, GM’s vision was to im-
prove how the automaker acquired critical software needed to manage GM’s infrastructure around
the world. Problems similar to GM’s were also being experienced in government acquisition of-
fices. In 2006, the SEI published Adapting CMMI for Acquisition Organizations: A Preliminary
Report [Hofmann 2006]. This document and its recommendations were piloted and reviewed by
acquisition organizations and used as the basis for what became CMMI for Acquisition, Version
1.2, which was later updated to Version 1.3 in 2007. CMMI-ACQ describes practices for acquisi-
tion organizations to avoid, eliminate, or mitigate barriers and problems in the acquisition process
through improving operational efficiency; initiating and managing the process for acquiring prod-
ucts and services, including solicitations, supplier sourcing, supplier agreement development and
award, and supplier capability management; and utilizing a common language for both acquirers

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/8-CMMI-ACQ%20140103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/11-PSP-TSP%20140103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/8-CMMI-ACQ%20140103.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 130
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

and suppliers so that quality solutions are delivered more quickly at a lower cost with the most ap-
propriate technology. Often, teams must coordinate the functions, manage the risks, and handle
information flow as part of a complex relationship with other organizations. CMMI-ACQ pro-
vides guidance for this type of challenge.

CMMI for Services (CMMI-SVC). The CMMI-SVC model was the first real extension to the
CMMI Framework. A model addressing service establishment and delivery was created because
the demand for process improvement in services continues to grow (services constitute more than
80 percent of the U.S. and global economy) and stakeholders approached the SEI requesting a
model for services. The model covers the activities required to establish, deliver, and manage ser-
vices. It incorporates work by several service organizations and draws on concepts and practices
from other service-focused standards and models, including Information Technology Infrastruc-
ture Library (ITIL); ISO/IEC 20000: Information Technology—Service Management; Control
Objectives for Information and related Technology (CobiT); and Information Technology Ser-
vices Capability Maturity Model (ITSCMM).

 The Consequence: CMMI Models Are Used Effectively Worldwide

CMMI models are being used by small and large organizations alike in a variety of industries, in-
cluding electronics, health services, finance, government, insurance, and transportation [CMMI
Institute 2013]. Adopting organizations include Boeing, General Motors, JP Morgan, Bosch, and
many others in North America, Europe, Asia, Australia, and South America. Adoption statistics
show the worldwide impact:

• More than 400 organizations are authorized to deliver training and appraisals.

• More than 150,000 professionals have completed the Introduction to CMMI course.

• CMMI appraisals have been reported from 74 countries, and an estimated 2.4 million people
work in organizations that have had at least one appraisal since April 2002.

Integration has provided organizations with a number of advantages, including linkage of man-
agement and engineering activities to business objectives; the visibility of the product life cycle
and engineering activities to ensure that the product or service meets customer expectations; lev-
eraging from additional areas of best practice (measurement, risk management, and supplier man-
agement); robust high-maturity practices; the visibility of additional organizational functions criti-
cal to their products and services; and coupling with relevant ISO standards [CMMI 2004]. In
addition, organizations can more easily pursue enterprise-wide process improvement because each
CMMI model in the product suite is designed to be used in concert with other CMMI models.

 The SEI Contribution

The success of the CMMI project resulted from the contribution of a number of teams from indus-
try, government, and the SEI that worked together to evolve the legacy CMM frameworks into the
CMMI framework. The SEI provided the leadership and architectural vision and acted as the
steward organization, providing a source of sustainment and continuing support for the adoption,
improvement, and evolution of the CMMI product suite. The SEI also worked to ensure the qual-

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 131
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

ity and widespread use of the CMMI and to support its adoption throughout government and in-
dustry. In addition, the SEI administered the SEI Partner Network, which in turn provided support
for the authorization and maintenance of SCAMPI lead appraisers and instructors for the CMMI
introductory course.

In 2012, as part of its mission to transition mature technology to the software community, the SEI
transferred CMMI-related products and activities to the CMMI Institute (http://cmmiinsti-
tute.com), a subsidiary of Carnegie Innovations, Carnegie Mellon University’s technology com-
mercialization enterprise. The CMMI Institute is working to build upon CMMI’s success, advance
the state of the practice, accelerate the development and adoption of best practices, and provide
solutions to the emerging needs of businesses around the world.

 References

[CMMI 2002] CMMI Product Team. CMMI for Systems Engineering, Software Engineering, In-
tegrated Product and Process Development, and Supplier Sourcing, Version 1.1, Continuous Rep-
resentation (CMMI-SE/SW/IPPD/SS, V1.1, Continuous) (CMU/SEI-2002-TR-011). Software En-
gineering Institute, Carnegie Mellon University, 2002. http://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=6105

[CMMI 2004] CMMI Product Team. Upgrading from SW-CMM to CMMI. Software Engineering
Institute, Carnegie Mellon University, Feb 25, 2004. http://resources.sei.cmu.edu/as-
set_files/WhitePaper/2004_019_001_29417.pdf

[CMMI 2010a] CMMI Product Team. CMMI for Development, Version 1.3 (CMU/SEI-2010-TR-
033). Software Engineering Institute, Carnegie Mellon University, 2010. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661

[CMMI 2010b] CMMI Product Team. CMMI for Services, Version 1.3 (CMU/SEI-2010-TR-034).
Software Engineering Institute, Carnegie Mellon University, 2010. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?AssetID=9665

[CMMI 2010c] CMMI Product Team. CMMI for Acquisition, Version 1.3 (CMU/SEI-2010-TR-
032). Software Engineering Institute, Carnegie Mellon University, 2010. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?assetid=9657

[SCAMPI 2011] SCAMPI Upgrade Team. Standard CMMI Appraisal Method for Process Im-
provement (SCAMPI) A, Version 1.3: Method Definition Document (CMU/SEI-2011-HB-011).
Software Engineering Institute, Carnegie Mellon University, 2011. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?assetid=9703

[CMMI Institute 2013] CMMI Institute. Results. http://cmmiinstitute.com/results/ (2013).

[Hofmann 2006] Hofmann, Hubert; Ramani, Gowri; Yedlin, Deborah; & Dodson, Kathryn.
Adapting CMMI for Acquisition Organizations: A Preliminary Report (CMU/SEI-2006-SR-005).
Software Engineering Institute, Carnegie Mellon University, 2006. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?AssetID=7811

http://cmmiinsti-tute.com
http://cmmiinsti-tute.com
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=6105
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=6105
http://resources.sei.cmu.edu/as-set_files/WhitePaper/2004_019_001_29417.pdf
http://resources.sei.cmu.edu/as-set_files/WhitePaper/2004_019_001_29417.pdf
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=9665
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=9665
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetid=9657
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetid=9657
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?assetid=9703
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?assetid=9703
http://cmmiinstitute.com/results/

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 132
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Kitson 2009] Kitson, David; Vickroy, Robert; Walz, John; & Wynn, Dave. An Initial Compara-
tive Analysis of the CMMI Version 1.2 Development Constellation and the ISO 9000 Family
(CMU/SEI-2009-SR-005). Software Engineering Institute, Carnegie Mellon University, 2009.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8849

[Lockheed Martin 2009] “Lockheed Martin’s Maritime Systems and Sensors Unit Achieves
CMMI Maturity Level 5.” Washington, D.C December 1, 2009. http://www.lockheedmar-
tin.com/us/news/press-releases/2009/december/LockheedMartinsMaritimeSy.html

[SEI 2009] Brief History of CMMI. Software Engineering Institute, Carnegie Mellon University,
2009. http://resources.sei.cmu.edu/asset_files/Brochure/2009_015_001_28416.pdf

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8849
http://www.lockheedmar-tin.com/us/news/press-releases/2009/december/LockheedMartinsMaritimeSy.html
http://www.lockheedmar-tin.com/us/news/press-releases/2009/december/LockheedMartinsMaritimeSy.html
http://resources.sei.cmu.edu/asset_files/Brochure/2009_015_001_28416.pdf

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 133
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Expanding the CMMI Product Suite to the Acquisition Area of
Interest

 The Challenge: Meeting Acquisition
Needs with the CMMI Product Suite

The Capability Maturity Model Integration (CMMI)
product suite was spawned from discussions between an
SEI sponsor in the Office of the Secretary of Defense
(OSD) and the SEI. CMMI was a way to portray inte-
grated approaches to development for both systems and
software engineers. Its creation stimulated consideration
of companion approaches for other areas of interest that
would share many of the core concerns of project man-
agement, process management, and support. In the mid-
1990s, the U.S. Army requested a model to cover soft-
ware acquisition [Ferguson 1994].

 A Solution: CMMI-ACQ – A Full
Acquisition Solution

The initial thinking by the OSD sponsor for a CMMI ver-
sion for acquisition was that a brief approach would be
best, and this led to creation of the “Acquisition Module”
[Bernard 2005]. The desire for a full CMMI version that
allowed both training and assessment of progress came
from industry. The CIO of General Motors had orches-
trated a new approach to IT software at GM, where all the
software that ran each sector’s operations would be pro-
cured rather than internally developed. But the CIO rec-
ognized the value that process discipline would have
within his organizations around the world, even though
they were acquiring rather than actually developing the
software-intensive IT systems under his responsibility.
With the SEI’s support, a GM team created a draft ver-
sion that was called a CMMI for Outsourcing [Hoffman
2006]. In 2006, GM completed the draft; and a govern-
ment, industry, and SEI team was formed to develop the
CMMI-ACQ product suite. An advisory board was cre-
ated to recognize the needs of both government and in-
dustry for the final product. Team leadership was shared between an OSD staff member and an
SEI project manager. DoD acquisition expertise included two professors at the Defense Acquisi-

The View from Others

At the GAO, we have been using
the CMMI-ACQ model to evaluate
federal agencies’ acquisition ef-
forts. This use of CMMI-ACQ ena-
bles the GAO to evaluate acquisi-
tion activities across the
government using a common meth-
odology.

– Madhav Panwar, Senior
Level Technologist, GAO
[Gallagher 2011]

CMMI for Acquisition (CMMI-
ACQ) enables a predictable, con-
sistent, and reliable process for
defining the requirements, defining
an acquisition strategy, and cap-
turing the best sources.

– Anthony W. Spehar, VP
Missile Systems, Northrop
Grumman Aerospace
Systems [Gallagher 2011]

CMMI-ACQ doesn’t support the
practice of saying ‘I’m going to
hand this to you, and I’m gone.’
Instead, it’s about how you inter-
act with your supplier every day to
make sure it’s done correctly

– Ralph Szygenda, General
Motors CIO, quoted in
Information Week
[Weir 2007]

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/7-CMMI%20140103.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 134
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

tion University. Federal agencies, such as the Department of Homeland Security, also partici-
pated. A GAO18 analyst provided insights to ensure that the final product would assist the GAO in
its reviews of acquisition programs across the federal domain.

Throughout the development project, the team sought to maintain as much commonality as possi-
ble with the CMMI for Development [CMMI Team
2000]. Approximately three-quarters of the model con-
tent was virtually identical to the predecessor model.
This offers at least two advantages. One is that the com-
monality often means that understanding is easily trans-
ferred from the development domain to its sponsoring
agents, the organizations seeking to acquire a well-de-
veloped system. The second is that the potential of
shared commitment to process improvement by both
sides of the contractual relationship offers many poten-
tial benefits for teamwork. As some observers had long
noted, “a low-maturity acquirer who has contracted with
a high-maturity supplier can still deliver lower quality
systems to its customers.” (This is often caused by inef-
fective requirements engineering and the resulting “re-
quirements creep.”)

The team also recognized that the fit was not exact. A
significant portion of an acquisition team member’s time
is spent creating requests for proposals, reviewing the
competitive proposals, selecting a development organi-
zation, and then monitoring both the business and tech-
nical aspects of the developer’s progress, often for sev-
eral years after contract award. Upon acceptance of the
initial products, the acquirer often has to ensure effective
transition of the new systems into the business environ-
ment. Because many other systems are likely to be af-
fected by the new product’s arrival, significant attention
to interfaces with them is a particular concern for the ac-
quirer; often only some of the interfaces could be identi-
fied within the contractual requirements. Concerns like
these, and the variety of contractual mechanisms availa-
ble, pointed to the need for creating and maintaining an
effective acquisition strategy, another difference between the two domains.

One of the first pilots of the acquisition model occurred in the international realm. In Australia,
the equivalent to the U.S. DoD is called the Defence Materiel Organization, or DMO. One of the

18 At the time this was the General Accounting Office; it is now the Government Accountability Office.

The View from Others

I believe CMMI-ACQ could have
made a considerable difference in
the [failed program] and allowed
it to continue successfully. Just
by reading the purpose of each
process area and reflecting on
what could have been if the [pro-
gram] had followed it…, it would
undoubtedly be in the Army and
Navy inventories today.
— Hon. Claude Bolton,
 previously Assistant Secretary
 of the Army [Gallagher 2011]

When the US Air Force (AF) con-
solidated various systems engi-
neering assessment models into a
single model for use across the en-
tire AF, the effort was made signif-
icantly easier by the fact that every
model used to build the expanded
AF model was based on Capability
Maturity Model Integration
(CMMI) content and concepts.
— George Richard Freeman,
 Technical Director, USAF
 Center for Systems
 Engineering [Gallagher 2011]

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 135
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

key leaders within that organization wanted to ensure that both Australian suppliers and DMO ac-
quirers would show a commitment to using the best practices captured in CMMI models. They
piloted a near-final version and gave the development team some final recommendations that re-
sulted in the release version’s being based on some real-world experiences—from half a world
away.

 The Consequence: Acquisition Joins Development for Process
Improvement

The acquisition community is able to approach an acquisition with the same discipline that is ex-
pected of developers, and has the basis for consistently improving its processes. This not only en-
ables a more predictable acquisition, it sets a reasonable expectation that both parties are commit-
ted to following best practices and will identify factors that will improve the target system.

 The SEI Contribution

The architecture of the CMMI models was based upon foundational work by two SEI Fellows.
The notion of a process improvement journey with plateaus of measured accomplishment (staged
improvement) was conceived early in the SEI CMM activities [Humphrey 1989]. A companion
theory noted that improvement specific to each area of interest might be considered without the
breadth of coverage that the staged approach encouraged. This theory resulted in a companion ap-
proach for systems engineering [Bate 1994]. Both of these concepts were honored in CMMI,
which allows organizational choices or even hybrids to be created if they better stimulate process
improvement. The acknowledged leadership of the SEI on these two models and approaches facil-
itated the development of the teams that brought together government and industry partners and
accelerated the transition of the technology to practice.

The SEI created presentation and training materials and worked with standards bodies, including
IEEE, and the International Council on Systems Engineering (INCOSE) to further the maturation
of the models. Probably most important was the partnership with the National Defense Industrial
Association (NDIA) Systems Engineering Committee in finding suitable development team mem-
bers, along with the SEI sponsors in the DoD. The SEI provided evidence of the viability of the
acquisition “variant” through case studies with DoD acquisition organizations, such as the Air
Force’s Space and Missile Systems Center in Los Angeles. In addition, the SEI Partner Network
helped discover potential users in both government and industry around the world. It is significant
to note the first full appraisal against the CMMI-ACQ model was performed in a government pro-
gram office—in Taiwan.

The CMMI-ACQ work is an excellent example of expanding university research by adaption of a
successful initial model to satisfy new needs with strong synergies.

 References

[Bate 1994] Bate, Roger; Reichner, Albert; Garcia-Miller, Suzanne; Armitage, James; Cusick,
Kerinia; Jones, Robert; Kuhn, Dorothy; Minnich, Ilene; Pierson, Hal; & Powell, Tim. A Systems

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-The%20Capability%20Maturity%20Model%20for%20Software%2014103.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 136
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Engineering Capability Maturity Model, Version 1.0 (CMU/SEI-94-HB-004). Software Engineer-
ing Institute, Carnegie Mellon University, 1994. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=12037

[Bernard 2005] Bernard, Thomas; Gallagher, Brian; Bate, Roger; & Wilson, Hal. CMMI Acquisi-
tion Module (CMMI-AM), Version 1.1 (CMU/SEI-2005-TR-011). Software Engineering Institute,
Carnegie Mellon University, 2005. http://resources.sei.cmu.edu/library/asset-view.cfm?as-
setID=7665

[CMMI Team 2000] CMMI Product Development Team. CMMI for Systems Engineering/Soft-
ware Engineering, Version 1.02, Staged Representation (CMMI-SE/SW, V1.02, Staged)
(CMU/SEI-2000-TR-018). Software Engineering Institute, Carnegie Mellon University, 2000.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5263

[Ferguson 1994] Ferguson, Jack; Cooper, Jack; Falat, Michael; Fisher, Matthew; Guido, Anthony;
& Marciniak, John. Software Acquisition Capability Maturity Model (CMU/SEI-96-TR-020).
Software Engineering Institute, Carnegie Mellon University, 1996. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?assetID=12619

[Gallagher 2011] Gallagher, Brian; Phillips, Mike; Richter, Karen; & Shrum, Sandy. CMMI for
Acquisition. Addison-Wesley Professional, 2011 (ISBN 0321711513).

[Hoffman 2006] Hoffman, Hubert; Yedlin, Deborah; Mishler, John; & Kushner, Susan. CMMI for
Outsourcing: Guidelines for Software, Systems, and IT Acquisition. Addison-Wesley Professional,
2007 (ISBN 0321477170).

[Humphrey 1989] Humphrey, Watts S. Managing the Software Process. Addison-Wesley Profes-
sional, 1989 (ISBN 0201180952). http://resources.sei.cmu.edu/library/asset-view.cfm?as-
setID=30884

[Weir 2007] Weier, Mary Hayes. “General Motors CIO Promotes Procurement Standards.” Infor-
mation Week. November 8, 2007. http://www.informationweek.com/general-motors-cio-pro-
motes-procurement-standards/d/d-id/1061282?

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=30884
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=30884
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12037
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12037
http://resources.sei.cmu.edu/library/asset-view.cfm?as-setID=7665
http://resources.sei.cmu.edu/library/asset-view.cfm?as-setID=7665
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5263
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?assetID=12619
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?assetID=12619

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 137
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 The Smart Grid

 The Challenge: The Need for New Approaches for Utilities

Demand for electricity worldwide is projected to nearly double from 17,200 terawatt hours
(TWh)19 in 2009 to over 31,700 TWh in 2035 [PwC 2012]. Prices for electricity in Western coun-
tries are predicted to increase by 400 percent in 30 years [NRG 2012]. Increased demand could
also lead to more blackouts. A PricewaterhouseCoopers study projects that blackouts in North
America and Europe are two to three times more likely to occur by 2030 [PwC 2012]. Sustainable
sources would reduce carbon emissions from electricity generation, yet non-fossil fuels provide
the source for only 34 percent of electricity generation today.

A smart grid helps to address some of these issues, and transformation to smart grid is a major un-
dertaking. Thus, electric utilities must carefully consider the reasons to invest in it. Some utilities
might be driven to a smart grid transformation to protect against a steep rise in electricity genera-
tion and delivery costs as energy consumption explodes in the coming decades. Other utilities
might want to push forward with sustainable sources to reduce carbon emissions from electricity
generation [NRG 2012]. Still other utilities might desire to build empowered and involved work-
forces, improve business performance, create greater customer satisfaction, extend asset life, or
comply with regulations [SGMM Team 2010a]. Whatever the motivation, industry consultants ad-
vise utilities to recognize the need to “define a smart grid vision and develop a road map to get
there” [Asthana 2010]. As Steve Rupp of SAIC Energy, Environment and Infrastructure says,
“The key to success in any grid transformation is to have a good plan and to work that plan”
[Rupp 2012].

 A Solution: Smart Grid Model and Transformation Process

Smart Grid Maturity Model (SGMM) development began in 2007, when IBM formed a coalition
of major utility companies, the Global Intelligent Utility Network Coalition (GIUNC).20 IBM,
GIUNC, and American Productivity and Quality Center (APQC) created the model to change the
way power is generated, distributed, and used by adding digital intelligence to the current sys-
tems. The SGMM supports the transformation process and helps utilities with planning. In 2009,
IBM handed off SGMM stewardship to the SEI because it believed that a neutral third party
would be more effective in encouraging industry adoption of the model [Jones 2009]. With input
from industry stakeholders and the Department of Energy (DOE)—the stewardship sponsor—the
SEI released Version 1.1 of the SGMM in 2010 [SGMM Team 2010b] and Version 1.2 in 2011
[SGMM Team 2011].

The SGMM product suite consists of the model itself, the Navigation Process of expert-led work-
shops and analysis, the Compass questionnaire-based assessment for determining maturity ratings

19 Wh = terawatt hours

20 The GUINC website is https://www-304.ibm.com/communities/service/html/communityview?com-
munityUuid=1a988236-4f84-4a80-8d8b-b5a288d1566a. A 2009 press release can be seen at
www-03.ibm.com/press/us/en/pressrelease/28838.wss.

https://www-304.ibm.com/communities/service/html/communityview?com-munityUuid=1a988236-4f84-4a80-8d8b-b5a288d1566a
https://www-304.ibm.com/communities/service/html/communityview?com-munityUuid=1a988236-4f84-4a80-8d8b-b5a288d1566a

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 138
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

and performance comparisons, Navigation Process training, and a program to license organiza-
tions and certify individuals to deliver the Navigation Process. The SGMM Matrix offers a sum-
mary view of the model domains and expected character-
istics in each domain and at each maturity level.21

 The Consequence: Effective Method for
Utilities’ Transition to the Smart Grid

Utilities that have approached their smart grid transfor-
mation planning with the SGMM Navigation Process
have seen a number of benefits. They have the evidence
needed to maintain financial support and an initial oppor-
tunity to formally review and plan their smart grid activi-
ties. The use of a common language across the enterprise
enables effective communication about smart grid reali-
ties and objectives.

Ultimately, in the U.S. and other nations, grid reliability,
security, efficiency, and safety will increase. As organiza-
tions progress, they manage power flows so that power
losses are minimized and the usage of lowest cost power
generation resources are maximized. They implement
business processes that deliver an environmentally
friendly energy network while minimizing costs and sus-
taining profitability. The growing number of industry
“SGMM Navigators,” trained by the SEI, means there is
model expertise in industry able to guide the SGMM Navigation Process.

 The SEI Contribution

Initial work leading to the SGMM was done by an IBM-led coalition of major utility companies,
the Global Intelligent Utility Network Coalition. Their work was handed over to the SEI as a neu-
tral, third-party steward. The Department of Energy funded the SEI to take on the SGMM stew-
ardship. In addition to its neutrality, the SEI had an existing relationship and other work in critical
infrastructure. The DOE provides tools in support of public-private partnership efforts to modern-
ize the grid as a national priority. The SEI is also collaborating with APQC, a non-profit member-
based research organization to help organizations adopt the model.

As SGMM steward, the SEI evolves the model and makes it freely available as a service to the
utility industry. With industry stakeholder and DOE input, the SEI released Version 1.1 of the
model in 2010 and Version 1.2 in 2011. In addition, the SEI developed the SGMM product suite
that includes the Navigation Process, the Compass assessment, Navigation Process training, and
the licensing and certification program for delivering the Navigation Process. SGMM expertise is

21 SGMM products and other SGMM information are available at http://www.sei.cmu.edu under “Work

Areas.”

The View from Others

Pepco Holdings has been involved
with the SGMM since its inception.
We recently completed the survey
again, using the SGMM Naviga-
tion process. This was helpful in
fostering candid, fact-based dis-
cussion of where we have been,
where we are today, and where we
expect to be in the future. We look
forward to using the tool as an in-
tegral part of our ongoing plan-
ning and transformation process,
and in measuring our progress
over time.

– George Potts, Vice
President, Business
Transformation, Pepco
Holdings, Inc. [SGMM
2010a]

http://www.sei.cmu.edu/

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 139
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

becoming more widespread. As utilities adopt the smart grid, U.S. and other nations’ grid reliabil-
ity, security, efficiency, and safety will increase.

 References

[Asthana 2010] Asthana, Anjan; Booth Adrian; & Green, Jason. Best Practices in the Deployment
of Smart Grid Technologies. McKinsey and Company, 2010.

[Jones 2009] Jones, K. C. “Carnegie Mellon to Oversee IBM Smart Grid Maturity Model.” Infor-
mationWeek March 30, 2009. http://www.informationweek.com/carnegie-mellon-to-oversee-ibm-
smart-gri/216401730

[NRG 2012] NRG Experts. “Where We’ve Been, Where We’re Going: NRG’s Smart Grid FAQs
and Primer.” March 30, 2012. http://www.smartgridnews.com/artman/publish/Business_Mar-
kets_Pricing/NRG-s-smart-grid-FAQs-and-primer-4623.html

[PwC 2012] PricewaterhouseCoopers (PwC). The Shape of Things to Come: Investment, Afforda-
bility, and Security in an Energy-Hungry World. 12th PwC Annual Global Power & Utilities Sur-
vey, 2012.

[Rupp 2012] Rupp, Steven S. The California Energy Commission and SGMM: Partners for a Fu-
ture Vision of Smart Grid (webinar). http://www.sei.cmu.edu/library/abstracts/presentations/webi-
nar20120321.cfm (2012).

[SGMM Team 2010a] SGMM Team. Smart Grid Maturity Model: Update October 2010. Soft-
ware Engineering Institute, Carnegie Mellon University, 2010. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?assetID=28296

[SGMM Team 2010b] SGMM Team. Smart Grid Maturity Model, Version 1.1: Model Definition
(CMU/SEI-2010-TR-009). Software Engineering Institute, Carnegie Mellon University, 2010.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9455

[SGMM Team 2011] SGMM Team. Smart Grid Maturity Model, Version 1.2: Model Definition
(CMU/SEI-2011-TR-025). Software Engineering Institute, Carnegie Mellon University, 2011.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10035

http://www.informationweek.com/carnegie-mellon-to-oversee-ibm-smart-gri/216401730
http://www.informationweek.com/carnegie-mellon-to-oversee-ibm-smart-gri/216401730
http://www.smartgridnews.com/artman/publish/Business_Mar-kets_Pricing/NRG-s-smart-grid-FAQs-and-primer-4623.html
http://www.smartgridnews.com/artman/publish/Business_Mar-kets_Pricing/NRG-s-smart-grid-FAQs-and-primer-4623.html
http://www.sei.cmu.edu/library/abstracts/presentations/webi-nar20120321.cfm
http://www.sei.cmu.edu/library/abstracts/presentations/webi-nar20120321.cfm
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?assetID=28296
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?assetID=28296
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9455

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 140
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Software Risk Management

 The Challenge: Assessing and Managing Software Risks

Although the DoD (and NASA) had mature systems risk management approaches in the early
1990s, software risks were largely ignored, partially because there was no effort to collect and cat-
egorize sources of previous failures. The DoD continued to experience highly publicized failures
and faced an acknowledged inability to take full advantage of the potential benefits that software
offered [Dick 1991].

As the SEI’s technical reputation grew, the DoD began requesting that the SEI conduct “red-
team” assessments on programs that appeared to be in serious trouble. After one such exercise, the
DoD program manager asked the SEI to provide a briefing of its findings. After the presentation,
a senior DoD official in the audience issued a challenge: “It is clear that an SEI team of software
experts can successfully assess the risks in a software system. Would it be possible for the SEI to
capture that knowledge and present it in a way that knowledgeable people who are not experts can
make a similar assessment without the SEI’s help?” The SEI realized that if it could rise to this
challenge, the community’s understanding of the causes of failure would grow over time.

 A Solution: Apply Risk Management Techniques to Software

The SEI response was to apply the discipline and techniques of risk management to the acquisi-
tion and development of large software-intensive systems. The SEI proposed to the DARPA pro-
gram manager a new effort in software risk management. At the time, the Air Force was having
difficulty with upgrades to the C-17, and the House Armed Services Committee suggested that the
SEI should help. DARPA agreed to SEI’s proposal with the understanding that the SEI would
help the C-17 program identify and mitigate risks in its process. With the support of the House
Armed Services Committee, additional funds were provided to pursue this approach.

The initial SEI effort was to establish a community effort through a series of workshops leading
up to a Risk Conference, held jointly with the National Security Industrial Association (NSIA) in
October 1991. Over the next several years, SEI risk research was focused on risk identification.
One of the earliest publications was the Software Risk Taxonomy [Carr 1993], which documented
sources of risk that decision makers should consider when identifying risks. It also documented
the early version of the first risk management method—the Software Risk Evaluation (SRE)—a
structured method to identify and analyze the risks on a software program.

SEI researchers continued to refine the SRE method as they worked with the Navy Program Exec-
utive Officer (PEO)(A) and the Navy Looking Glass program. A key achievement at this time was
the development of training in risk identification and analysis for SRE team members. The SEI
developed training to ensure that interviewers would ask questions in a consistent, non-threaten-
ing, non-judgmental, and non-leading manner. An additional aspect was investigating how acqui-
sition programs might be able to manage risks in collaboration with contractors to enable a pro-
gram manager to gain a clear picture of all the program’s risks. The research and lessons learned
from working with the Navy led to many of the concepts embodied in what became Continuous
Risk Management (CRM) and Team Risk Management (TRM). Additional work with NASA led
to the production of the Continuous Risk Management Guidebook in 1996 [Dorofee 1996] and the

https://collaboration.sei.cmu.edu/sites/SEIhistory/Management/3-AppraisalMethods140103.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 141
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Continuous Risk Management training course. The guidebook and associated course enabled pro-
gram managers and risk managers to learn how to manage risks more effectively.

In 1997, the SEI began to broaden its software risk management approach to other software-re-
lated areas including cybersecurity. When the Army wanted a risk management approach tailored
to acquisition programs, this work became the foundation for guidance in implementing the risk
management process area of the Software Acquisition CMM. The COTS Usage Risk Evaluation
(CURE) and the Architecture Tradeoff Analysis Method (ATAM), which focused on COTS prod-
ucts and software system architecture, respectively, were variations on the original risk assess-
ment (SRE). Risk was incorporated into CMMI in 2000 as a practice area (RSKM) in CMMI
V1.02.

Risk management was also a focus in the ongoing re-
search into cybersecurity by the CERT Coordination
Center (CERT/CC). In 1997, the Information Security
Evaluation (ISE), a variation of the SRE, was used to
identify vulnerabilities in operational, networked infor-
mation technology systems. In 1998, CERT researchers
began developing a new approach for managing cyber-
security risks within an organization based on the princi-
ples of CRM and ISE. This research and the Defense
Health Information Assurance Program (DHIAP)22 were
the driving forces for developing the Operationally Criti-
cal Threat, Asset, and Vulnerability Evaluation
(OCTAVE) [Alberts 2003]. The goal was to develop a
self-directed risk assessment as part of the DoD effort to
comply with the data security requirements defined by
the Health Insurance Portability and Accountability Act
(HIPAA) of 1996. DHIAP transitioned OCTAVE to the
Air Force and Army in 2001, using the SEI OCTAVE
training. OCTAVE continues to be a widely used infor-
mation security risk assessment method.

By 2005, software acquisition and development pro-
grams were becoming more distributed in nature, often comprising multiple geographically dis-
tributed organizations. Traditional risk approaches did not readily scale to these networked, highly
complex program environments. In 2006, the SEI began research into managing risks in interac-
tively complex software-reliant systems. This led to new methods for assessing risk and success
factors in complex networked systems (e.g., Mission (Risk) Diagnostic [Alberts 2008, 2009,
2012]) and a focus on using key drivers of success to produce a systemic view of program risk

22 DHIAP was a small consortium of organizations, including the SEI and the Advanced Technology

Institute (ATI) of the South Carolina Research Authority (SCRA), overseen by a group from the Tel-
emedicine Advanced Technology Research Center (TATRC) from Fort Detrick, Maryland.

The View from Others

I think the biggest contribution
was to bring awareness to the sub-
ject [of software risk manage-
ment], help legitimize it as a pro-
gram/project management
concern, and gave a process for
operationalizing it in a useful way.

– Robert Charette, founder of
ITABHI Corporation and
Chairman of the SEI Risk
Program Advisory Board

A Navy Program Manager stated
in the late 1990s that all of his in-
vestment in the SEI Risk Program
had paid off with the identification
and mitigation of a single cata-
strophic risk.

https://collaboration.sei.cmu.edu/sites/SEIhistory/Management/8-CMMI-ACQ%20140103.docx
https://collaboration.sei.cmu.edu/sites/Engineering%20Methods/Engineering%20MethodsChapter/7-COTS-BasedSystems131205.docx
https://collaboration.sei.cmu.edu/sites/Architecture/ArchitectureChapter/4-ATAM%20131119.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Management/3-AppraisalMethods140103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Management/7-CMMI%20140103.docx
https://collaboration.sei.cmu.edu/sites/SecurityChapter/SecurityChapter/1-IntroToSecurity140120L.docx
https://collaboration.sei.cmu.edu/sites/SecurityChapter/SecurityChapter/1-IntroToSecurity140120L.docx
https://collaboration.sei.cmu.edu/sites/SecurityChapter/SecurityChapter/8-OCTAVE140101.docx
https://collaboration.sei.cmu.edu/sites/SecurityChapter/SecurityChapter/8-OCTAVE140101.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 142
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Alberts 2009]. In 2010, SEI researchers began to apply these new risk principles as part of a re-
search effort into developing a method for assessing risk in the software supply chain. Finally,
much of the SEI’s current risk management work is focused on software assurance. In 2014, SEI
researchers began developing the Security Engineering Risk Analysis (SERA) method, a system-
atic risk-based method for building security into software-reliant systems rather than deferring se-
curity to later lifecycle activities such as operations.

 The Consequence: A Disciplined Approach to Identifying and Managing
Software Risks

The SEI had a significant impact on the community in terms of risk management, primarily by es-
tablishing the foundation of a defined practice and systematic way of identifying and codifying
risks. The SEI risk research produced one of the standards for software risk management, ena-
bling program managers in all types of software-intensive programs to do a better job of identify-
ing what could go wrong and mitigating the worst of those risks. In the Cutter Consortium’s re-
port, The State of Risk Management 2002, 21 percent of respondents to a survey about risk
management techniques said that they use SEI standards for risk management. Only ISO ranked
higher, with 36 percent of respondents.23

 The SEI Contribution

The SEI software risk management effort benefited from broad community input. Working with
the Department of Defense, NASA, industry, and cybersecurity experts and managers provided a
wealth of useful techniques and lessons learned, as well as the opportunities to improve different
approaches to solving the problems associated with risk management. Without these contribu-
tions, the resulting methods and approaches of the SEI’s work would not be as rich, deep, and
broad.

The SEI risk research continues today, examining specific problems associated with today’s
highly complex, interdependent programs and finding new ways to deal with the emergent issues
of tomorrow.

 References

[Alberts 2003] Alberts, Christopher & Dorofee, Audrey. Managing Information Security Risks:
The OCTAVE Approach. Addison-Wesley Professional, 2003 (ISBN 03211188630).

[Alberts 2008] Alberts, Christopher; Dorofee, Audrey; & Marino, Lisa. Mission Diagnostic Pro-
tocol, Version 1.0: A Risk-Based Approach for Assessing the Potential for Success (CMU/SEI-
2008-TR-005). Software Engineering Institute, Carnegie Mellon University, 2008. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=8665

23 Detailed information on this report is available only to registered Cutter users. However, some infor-

mation is available at http://www.cutter.com/cgi-bin/search/usr/local/etc/httpd/htdocs?fil-
ter=&query=hype+or+reality.

https://collaboration.sei.cmu.edu/sites/SecurityChapter/SecurityChapter/9-CSE-SWA140114.docx
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=8665
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=8665

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 143
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Alberts 2009] Alberts, Christopher & Dorofee, Audrey. A Framework for Categorizing Key
Drivers of Risk (CMU/SEI-2009-TR-007). Software Engineering Institute, Carnegie Mellon Uni-
versity, 2009. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9093

[Alberts 2012] Alberts, Christopher & Dorofee, Audrey. Mission Risk Diagnostic (MRD) Method
Description (CMU/SEI-2012-TN-005). Software Engineering Institute, Carnegie Mellon Univer-
sity, 2012. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10075

[Carr 1993] Carr, Marvin; Konda, Suresh; Monarch, Ira; Walker, Clay; & Ulrich, Carol. Taxon-
omy-Based Risk Identification (CMU/SEI-93-TR-006). Software Engineering Institute, Carnegie
Mellon University, 1993. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11847

[Dick 1991] Dick, David R., Col. USAF. “Slaying the Software Dragon” (Memo 91-02423).
Armed Forces Communications and Electronics Association, June 1, 1991.

[Dorofee 1996] Dorofee, Audrey; Walker, Julie; Alberts, Christopher; Higuera, Ronald; Murphy,
Richard; & Williams, Ray. Continuous Risk Management Guidebook. Software Engineering Insti-
tute, Carnegie Mellon University, 1996. http://resources.sei.cmu.edu/library/asset-view.cfm?as-
setID=30856

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9093
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10075
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11847

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 144
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Personal Software Process and Team Software Process

 The Challenge: Improving Software Quality During Development

As the use of computers and the development of software grew in the 1960s and 1970s, it was ac-
companied by growing pains: many projects failed to deliver quality products within a predictable
time or budget and project failure was common [Humphrey 1989]. In response to a request from
the Department of Defense, the SEI led the development of the Capability Maturity Model
(CMM), which captured organizational best practices for software development [Paulk 1993].
Maturity relates to the degree of formality and optimization of processes, from ad hoc practices, to
formally defined steps, to managed result metrics, to active optimization of the processes. When
the model was applied to an existing organization’s software development processes, it provided
an effective approach toward improving them.

Although the CMM began to see widespread adoption, some problems remained. An early mis-
perception of the CMM was that it did not apply to small organizations or projects. Another issue
was that the CMM told people what to do, it did not help them understand how, and software de-
velopment practice was nearer a craft than an engineering discipline. Most finished software prod-
ucts could be made to work, but only after extensive testing and repair. And as software programs
grew larger and larger, the difficulty of finding and fixing problems also began to increase expo-
nentially.

 A Solution: Personal Software Process and Team Software Process

Because he believed software quality starts with the individual engineer, an SEI Fellow decided to
apply the underlying principles of the CMM to the software development practices of a single de-
veloper. From 1989 to 1993, he wrote more than 60 programs and more than 25,000 lines of code
using CMM practices and concluded that the management principles embodied in the CMM were
just as applicable to individual software engineers. The resulting process was the Personal Soft-
ware Process (PSP) [Humphrey 1994].

The PSP is a structured software development process that helps software engineers understand
and improve their performance by using a disciplined, data-driven procedure. It includes effective
defect management techniques and comprehensive planning, tracking, and analysis methods. PSP
training follows an evolutionary improvement approach: engineers learning to integrate the PSP
into their processes beginning at the first level and progressing in process maturity to the final
level. Each level has detailed scripts, checklists, and templates to guide engineers through re-
quired steps that help individual engineers improve their own personal software process. Properly
used, the PSP provides the historical data engineers need to better make and meet commitments.

It soon became obvious that, while excellent results were possible using the PSP, it was almost
impossible to maintain the discipline required for PSP practices if the surrounding environment
did not encourage and demand them. Systems development is a team activity, and the effective-
ness of the team largely determines the quality of the engineering. A process for the smallest oper-
ational unit in most organizations, the project team, called Team Software Process (TSP) was de-
signed in 1996 [Humphrey 2000].

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-The%20Capability%20Maturity%20Model%20for%20Software%2014103.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 145
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

The principal motivator for the development of the TSP was the conviction that engineering teams
could do extraordinary work, but only if they were properly formed, suitably trained, staffed with
skilled members, and effectively led. The objective of the TSP is to build and guide such teams.
The TSP software development cycle begins with the launch, a planning process led by a spe-
cially trained coach. The launch is designed to begin the team-building process, and during this
time teams and managers establish goals, define team roles, assess risks, estimate effort, allocate
tasks, and produce a team plan. During an execution
phase, developers track planned and actual effort, sched-
ule, and defects, meeting regularly (usually weekly) to
report status and revise plans. An important element of
the TSP is the measurement framework. Engineers using
the TSP collect three basic measures: size, time, and de-
fects. They use many other measures that are derived
from these three basic measures. The measurement
framework consolidates individual data into a team per-
spective. The data collected are analyzed weekly by the
team to understand project status against schedule and
quality goals. A development cycle ends with a post
mortem to assess performance, revise planning parame-
ters, and capture lessons learned for process improve-
ment.

 The Consequence: Improved Quality at
the Individual and Team Levels

Experience with the TSP has shown that it improves the
quality and productivity of engineering teams while help-
ing them to more precisely meet cost and schedule com-
mitments. A study undertaken in 2003 demonstrated that
teams using the TSP were able to meet critical business
needs by delivering essentially defect-free software on
schedule and with better productivity. While industry data
indicated that over half of all software projects were more
than 100 percent late or were cancelled, the 20 TSP pro-
jects in 13 organizations included in the study delivered
their products an average of 6 percent later than they had
planned. These TSP teams also improved their productiv-
ity by an average of 78 percent. The teams met their
schedules while producing products that had 10 to 100
times fewer defects than typical software products. They
delivered software products with average quality levels of
5.2 sigma, or 60 defects per million parts (lines of code).
In several instances, the products delivered were defect
free [Davis 2003].

The View from Others

Our schedule reliability is now +/-
10 percent from –50/+200 percent
and our defect density at the team
level has been reduced by over 50
percent.

One of my first projects as an em-
bedded systems programmer fin-
ished on the day we planned to fin-
ish six months earlier. I attribute
the success to planning at a better
granularity and making full use of
the earned value tracking. The day
we got 100 percent earned value
was the day we planned to get 100
percent value, and we as a team
celebrated like we had won a bas-
ketball game.

Multiple projects in our organiza-
tion have been able to keep within
their time schedules (+/- three
weeks) over a six-month span. This
is something we [had] not been
able to accomplish in the past.
This is one of the reasons that
management is very happy with
the TSP process.

These quotes are from a team that
attended the PSP for Engineers
course and used PSP in its organi-
zation to meet TSP goals [Davis
2003].

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 146
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

An in-progress study of 214 TSP projects provides additional evidence of the benefits of disciplined
practice. The average CPI (Cost Performance Index) for these projects was 0.93, the average SPI
(Schedule Performance Index) was 0.88, and the average System Test Defect Density was 1.32 de-
fects per KSLOC (1000 lines of code, or LOC).

Specific examples of improvements include these:
• Hill Air Force Base, near Salt Lake City, Utah, is the first U.S. government organization to be

rated at CMM Level 5. The first TSP project at Hill found that team productivity improved
123 percent and test time was reduced from an organizational average of 22 percent to 2.7
percent of the project schedule.

• Boeing, on a large avionics project, had a 94 percent reduction in system test time, resulting
in a substantial improvement in the project schedule and allowing Boeing to deliver a high-
quality product ahead of schedule [Davis 2003].

• Teradyne found that, prior to the TSP, defect levels in integration test, system test, field test-
ing, and customer use averaged about 20 defects per KLOC. The first TSP project reduced
these levels to 1 defect per KLOC. Since it cost an average of 12 engineering hours to find
and fix each defect, Teradyne saved 229 engineering hours for every 1000 LOC of program
developed.

• Advanced Information Services reported in 2012 that its use of the TSP continues to result in
systems with very predictable schedule and quality. The company is currently averaging
0.3765 defects per KSLOC during user acceptance testing. In fact, quality and schedule are so
predictable with TSP that the company is able to support fixed price contracts that include a
warranty against defects after user acceptance test. In 2011, Advanced Information Services
delivered a large, 570 KSLOC software application to the Selective Service System with a de-
livered defect density of 0.097 defects/KSLOC [Sheshagari 2012, Ratnaraj 2012].

• Beckman Coulter reported in 2012 that first-time use of the TSP resulted in 5 to 100 times
improvement in fielded software on six different medical devices [Van Eps 2012].

A major contributor to the success of TSP teams, besides data, is the commitment and ownership
generated during the launch and sustained throughout the life of the project. It is the synergy that
is created when a team has a common goal and each and every person on that team understands
how his or her work and everyone else’s work contributes to the achievement of that goal.

 The SEI Contribution

If even the smallest programs are not of the highest quality, they will be hard to test, take time to
integrate into larger systems, and be cumbersome to use. The SEI was an early contributor to the
idea that software could be significantly improved, from the bottom up, by bringing discipline to
the performance of individual engineers and engineering teams. Only a statistically managed soft-
ware engineering discipline can support the growing size and complexity of today’s systems. PSP
and TSP provide the framework and data required.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 147
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 References

[Carleton 2010] Carleton, Anita; Over, James; Schwalb, Jeff; Kellogg, Delwyn; & Chick, Timo-
thy. Extending Team Software Process (TSP) to Systems Engineering: A NAVAIR Experience Re-
port (CMU/SEI-2010-TR-008). Software Engineering Institute, Carnegie Mellon University,
2010. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9443

[Davis 2003] Davis, Noopur & Mullaney, Julia. The Team Software Process (TSP) in Practice: A
Summary of Recent Results (CMU/SEI-2003-TR-014). Software Engineering Institute, Carnegie
Mellon University, 2003. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=6675

[Humphrey 1989] Humphrey, Watts S. Managing the Software Process. Addison-Wesley Profes-
sional, 1989 (ISBN 0201180952). http://resources.sei.cmu.edu/library/asset-view.cfm?as-
setID=30884

[Humphrey 1994] Humphrey, Watts S. A Discipline for Software Engineering: The Complete PSP
Book. Addison-Wesley Professional, 1994 (ISBN 0201546108). http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?assetID=30873

[Humphrey 1997] Humphrey, Watts S. Managing Technical People: Innovation, Teamwork, and
the Software Process. Addison-Wesley Professional, 1997 (ISBN 0201545977). http://re-
sources.sei.cmu.edu/library/asset-view.cfm?assetID=30850

[Humphrey 2000] Humphrey, Watts S. Introduction to the Team Software Process. Addison-Wes-
ley, 2000 (ISBN 020147719X). http://resources.sei.cmu.edu/library/asset-view.cfm?as-
setID=30774

[Paulk 1993] Paulk, Mark; Curtis, William; Chrissis, Mary Beth; & Weber, Charles. Capability
Maturity Model for Software (Version 1.1) (CMU/SEI-93-TR-024). Software Engineering Insti-
tute, Carnegie Mellon University, 1993. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=11955

[Ratnaraj 2012] Ratnaraj, David Y. “Excellence: Methodology Assists, Discipline Delivers.” TSP
Symposium. St. Petersburg, FL, September 17-20, 2012. Software Engineering Institute, Carnegie
Mellon University, 2010. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=298076

[Sasao 2010] Sasao, Shigeru; Nichols, William; & McCurley, James. Using TSP Data to Evaluate
Your Project Performance (CMU/SEI-2010-TR-038). Software Engineering Institute, Carnegie
Mellon University, 2010. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9677

[Sheshagari 2012] Sheshagari, Girish. “High Maturity Practices, The Way Forward: Solving Soft-
ware Engineering’s Persistent Problems.” TSP Symposium. St. Petersburg, FL, September17-20,
2012. Software Engineering Institute, Carnegie Mellon University, 2012. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?assetID=298012

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9443
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=6675
http://resources.sei.cmu.edu/library/asset-view.cfm?as-setID=30884
http://resources.sei.cmu.edu/library/asset-view.cfm?as-setID=30884
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?assetID=30873
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?assetID=30873
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetID=30850
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetID=30850
http://resources.sei.cmu.edu/library/asset-view.cfm?as-setID=30774
http://resources.sei.cmu.edu/library/asset-view.cfm?as-setID=30774
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=11955
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=11955
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=298076
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9677

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 148
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Van Eps 2012] Van Eps, Scott & Marshall, Rick. “Using the TSP at the End of the Development
Cycle.” TSP Symposium. St. Petersburg, FL, September 17-20, 2012. Software Engineering Insti-
tute, Carnegie Mellon University, 2012. http://resources.sei.cmu.edu/library/asset-view.cfm?as-
setID=298042

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 149
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Measurement and Analysis

 The Challenge: Measuring Software Development Capabilities and
Products

Measurement and analysis in software engineering has long been a topic of interest. Without it,
there is no clear, quantitative picture of software development capabilities or a basis for predicting
or comparing products and processes. Although early software projects used several systems for
predicting software costs, measurement was done in different ways and was often based on defini-
tions that were inconsistent. The need for a standard and reliable set of measures that would help
acquisition program managers and software development contractors alike was an early priority
for the SEI.

 A Solution: Approaches for Collecting and Analyzing Data

In response to the DoD’s 1991 Software Technology Strategy, the SEI agreed to lead the develop-
ment of a set of core measures to “help the DoD plan, monitor, and manage its internal and con-
tracted software development projects” [Carleton 1992]. In collaboration with measurement ex-
perts, including those who developed prediction systems, the SEI developed definition
frameworks for a set of core measures. The measures focus on size, defects, effort, and schedule.
These definition frameworks make it possible for organizations to use the measures that best
match their processes and infrastructure while benefiting from a standard way of describing the
operational definitions in detail.

Once the definition problem for measures was resolved, the SEI turned its attention to helping or-
ganizations decide what to measure. Experience from management information systems shows
that many reports could be generated that have little to no impact on decision making within the
organization. The SEI began to investigate the goal-question-metric method for aligning measure-
ment with information needs in the organization [Basili 1984]. The SEI modified this approach to
include explicit consideration of the output of the measurement activity—that is, the indicator to
be used by decision makers. The method was dubbed goal-question-indicator-measure (GQ(I)M).
Using the GQ(I)M approach helps mitigate the risk of measuring and reporting information that
provides little or no value to the organization.

As approaches for conducting measurement effectively matured and were disseminated, the next
significant challenge became data analysis [Paulk 2000]. The notion of analysis, especially analy-
sis related to process improvement, was often equated with the high-maturity practices of the SW
CMM and CMMI. More focus on the “analysis” part of measurement and analysis was also
spurred by the establishment of the Measurement and Analysis process area in the CMMI [CPT
2002].

An early and foundational work in this area was Measuring the Software Process, which showed
how statistical process control techniques could be fruitfully applied to software data [Florac
1999]. This was followed by substantial work on the application of Six Sigma analytical tech-
niques to software engineering [Penn 2007]. The Six Sigma connection provided a rich set of
tools as well as a “brand” that already had roots in many organizations, facilitating its adoption.
The current work on developing estimates early in the DoD acquisition lifecycle incorporates

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/13-GQIM%20140103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-The%20Capability%20Maturity%20Model%20for%20Software%2014103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-The%20Capability%20Maturity%20Model%20for%20Software%2014103.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/7-CMMI%20140103.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 150
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

techniques used in Six Sigma, such as Bayesian Belief Networks, matrix transformation, and sub-
jective input calibration methods. The method quantifies uncertainties, allows subjective inputs,
visually depicts influential relationships among program change drivers and outputs, and assists
with the explicit description and documentation underlying an estimate.

 The Consequence: Effective, Quantitative Basis for Improvement

The SEI work in measurement and analysis has had far-reaching impact. The core measures report
became a foundational work and is referenced by many subsequent publications on software
measurement, and the definition checklists have been widely incorporated as part of the approach
for specifying measures for cost estimation. SEI-developed training courses on analyzing software
data help others leverage the power of statistics in understanding and gaining insight from the
measures collected about software projects, processes, and products.

 The SEI Contribution

The SEI did not work alone in its attempt to move the measurement and analysis community for-
ward. One specific application of the early measurement definition work was in conjunction with
the Cost Constructive Cost Model (CoCoMo) [Boehm 2000]. A primary input to cost models is an
estimate of the size of the software to be built. The CoCoMo model uses the SEI’s size definition
checklist approach to specify the operational definition of the number of lines of code to be devel-
oped. Also, much work, especially in the early years, was done in collaboration with the Practical
Software Measurement (PSM) initiative, sponsored by the DoD and the U.S. Army [PSM 2012].
While there are some differences in methods and techniques, the underlying principles in SEI and
PSM measurement and analysis products are virtually the same. The SEI continues to participate
in the PSM’s active, collaborative forum for measurement and analysis.

The SEI has consistently conducted research and development related to measurement and analysis.
While the initial focus was on helping to identify and standardize measures related to project man-
agement and process improvement, it grew to include the application of quantitative analytical tech-
niques for use of the data. Looking to the future, the SEI is developing a research agenda to investi-
gate the application of probabilistic and modeling techniques in measurement and analysis.

 References

[Basili 1984] Basili, V. & Weiss, D. “A Methodology for Collecting Valid Software Engineering
Data.” IEEE Transactions on Software Engineering 10, 3 (November 1984): 728-738.

[Boehm 2000] Boehm, Barry W.; Abts, Chris; Brown, Winsor A.; Chulani, Sunita, et al. Software
Cost Estimation With Cocomo II. Prentice Hall, 2000 (ISBN 0130266922).

[Carleton 1992] Carleton, Anita; Park, Robert; Bailey, Elizabeth; Goethert, Wolfhart; Florac, Wil-
liam; & Pfleeger, Shari. Software Measurement for DoD Systems: Recommendations for Initial
Core Measures (CMU/SEI-92-TR-019). Software Engineering Institute, Carnegie Mellon Univer-
sity, 1992. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11675

[CPT 2002] CMMI Product Team. CMMI for Software Engineering, Version 1.1, Staged Repre-
sentation (CMMI-SW, V1.1, Staged) (CMU/SEI-2002-TR-029). Software Engineering Institute,

http://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Chris+Abts&search-alias=books&text=Chris+Abts&sort=relevancerank
http://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=A.+Winsor+Brown&search-alias=books&text=A.+Winsor+Brown&sort=relevancerank
http://www.amazon.com/s/ref=dp_byline_sr_book_4?ie=UTF8&field-author=Sunita+Chulani&search-alias=books&text=Sunita+Chulani&sort=relevancerank
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11675

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 151
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Carnegie Mellon University, 2002. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=6217

[Florac 1999] Florac, William A. & Carleton, Anita D. Measuring the Software Process: Statisti-
cal Process Control for Software Process Improvement. Addison-Wesley Professional, 1999
(ISBN 0201604442).

[Paulk 2000] Paulk, Mark & Chrissis, Mary Beth. The November 1999 High Maturity Workshop
(CMU/SEI-2000-SR-003). Software Engineering Institute, Carnegie Mellon University, 2000.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5013

[Penn 2007] Penn, M. L.; Siviy, Jeannine; & Stoddard, Robert W. CMMI and Six Sigma: Partners
in Process Improvement. Addison-Wesley Professional, 2007 (ISBN 0321516087).

[PSM 2012] Practical Software and Systems Measurement. “Practical Software and Systems
Measurement: A Foundation for Objective Project Management.”
http://www.psmsc.com/AboutPSM.asp (2012).

http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=6217
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=6217
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5013
http://www.psmsc.com/AboutPSM.asp

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 152
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Developing a Measurement System That Supports an
Organization’s Goals

 The Challenge: Software Project Measurements That Support Business
Goals

Despite significant improvements in implementing measurement programs for software develop-
ment, a large percentage of measurement programs are not successful. Organizations often do not
achieve the potential benefits of a sound measurement program due to the inconsistent construc-
tion and interpretation of indicators derived from measurement data. One of the dangers in enter-
prises as complex as software development and support is that there are potentially so many
things to measure that users are easily overwhelmed by the opportunities. The search for the
“right” measures can easily become confusing when the selection is not driven by the information
requirements to be addressed by the measures. A successful measurement program is more than
collecting data. The benefits and value of doing software measurement comes from the decisions
and actions taken in response to analysis of the data, not from the collection of the data. The SEI
was challenged to develop a measurement and analysis methodology to support the goals of an
organization and to ensure that data is not collected for the sake of collection alone.

 A Solution: Goal-Driven Software Measurement—Goal-Question-Indicator

To address the challenge, the goal-question-metric (GQM) methodology, introduced and de-
scribed by Basili and Rombach24 [Basili 1988, Rombach 1989], was enhanced and augmented by
the SEI into the goal-question-(indicator)-metric methodology (GQIM), a disciplined approach to
defining a set of measures and indictors related to the goal. The goal-driven software measure-
ment process produces measures that provide insights into important management issues as identi-
fied by the business goals. Since the measurements are traceable back to the business goals, the
data collection activities stay better focused on their intended objectives. In goal-driven measure-
ment, the primary question is not “What metrics should I use?” but “What do I want to know or
learn?” [Rombach 1989].

The steps of the approach are organized into three sets of activities: identifying goals, defining in-
dicators and the data needed to produce them, and creating an action plan to guide the implemen-
tation. Business goals are translated into measurement goals [Basili 1984, Briand 1996] by refin-
ing them into concrete, operational statements with a measurement focus. This refinement process
involves probing and expanding each high-level goal to derive questions. The questions provide
concrete examples that can lead to statements that identify what type of information is needed.
From these questions, displays or indicators are postulated that provide answers and help link the
measurement data that will be collected to the measurement goals. The goal-driven approach re-
quires that indicators (charts, tables, or other types of displays and reports) be sketched out and
approved by the intended user. These indicators serve as a requirements specification for the data
that must be gathered, the processing and analysis that must take place, and the schedule for these

24 Basili, Victor R. “Using Measurement for Quality Control and Process Improvement.” 2nd Annual

SEPG Workshop. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA., June
21-22, 1989. No longer available.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 153
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

activities. The final set of activities uses the output of the preceding two sets of activities to de-
velop an action plan.

The indicator template developed by the SEI to accompany the goal-driven measurement method-
ology precisely describes an indicator—including its construction, correct interpretation, and how
it can be used to direct data collection and presentation, along with measurement and analysis pro-
cesses. The indicator template helps an organization to define indicators, or graphical representa-
tions of measurement data, which describe the “who, what, where, when, why, and how” for ana-
lyzing and collecting measures.

The goal-driven software measurement methodology
was provided and implemented in a training course and
workshop format to organizations across the spectrum of
software/system development and maintenance in gov-
ernment, the DoD, and industry; tailored versions have
been offered in industry settings. Participating organiza-
tions include the Internal Revenue Service, NASA, Nu-
clear Regulatory Commission, the U.S. Department of
Veterans Affairs, U.S. Army Aviation and Missile Com-
mand (AMCOM), Caterpillar, and Xerox.

 The Consequence: Successful
Measurement Processes That Support
an Organization’s Business Goals

The goal-driven measurement methodology has proved
to be broadly applicable, not just for software measure-
ment. It has been used to establish a system of uniform
measures across a global enterprise, assessing the impact
of investment in software process improvement and de-
veloping a standardization of measurement to reconcile
perceived conflicts between what the customer demands and what the “corporate” requires. The
goal-driven software measurement process directs attention toward measures of importance rather
than measures that are merely convenient.

The goal-driven measurement methodology and the accompanying indicator templates have been
used successfully by many organizations in industry and government in diverse settings and with
different goals to implement measurement programs. The artifacts developed (such as templates
and checklists) and the lessons learned have provided insight to others trying to implement meas-
urement programs. The indicator template that accompanies goal-driven measurement reflects the
thinking and practices of multiple organizations over time. It has been shown to reduce cycle time
by enabling organizations to leverage their experience and to quickly focus on measurement con-
tent rather than form. The indicator template has been adopted and integrated into many organiza-
tions’ processes. Electronic Data Systems now describes the indicator template as the “corner-
stone” of its successful measurement and process improvement effort [Crawford 2004]. In
addition, Dr. Rick Hefner of Northrup Grumman has included GQIM in his (Define, Measure,

The View from Others

The GQ(I)M method provides a
powerful way for software evalua-
tors to ensure that the software
measurement achieves pre-deter-
mined business objectives.

– Andrew Boyd, City
University, Department of
Information Science, United
Kingdom and John A. Boyd,
Boyds VI Consulting
[Boyd 2002]

Developing clear and relevant in-
dicators is crucial to measurement
success.

– Terry Vogt, Booz, Allen,
Hamilton [Vogt 2008]

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 154
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Analyze, Improve, Control (DMAIC) toolkit for implementation of Six Sigma in the aerospace
industry, based on its well-defined approach [Hefner 2011].

 The SEI Contribution

The “I” in the parentheses distinguishes the SEI-developed GQ(I)M methodology from the
closely related GQM methodology introduced and described by Basili and Rombach. In the SEI
elaboration of Basili’s methodology, an additional intermediate step assists in linking the ques-
tions to the measurement data that will be collected. (Experience shows that it is much easier to
postulate indicators and then identify the data items needed to construct them than it is to go di-
rectly to the measures. Starting with the raw data [measures or data elements] and creating an in-
dicator can lead to convenient or elegant displays that incorporate the data but fail to address the
information needed to answer the questions that drove the data collection.)

The GQ(I)M methodology was enhanced with the development of the indicator template that con-
tains fields to precisely document the construction, interpretation, and use of the indicator. It
serves as a tactical aid in the execution of the measurement process. It helps to ensure the con-
sistent collection of measures for constructing the indicators and provides a set of criteria for en-
suring the consistent interpretation of the measures collected.

 References

[Basili 1984] Basili, V. & Weiss, D. “A Methodology for Collecting Valid Software Engineering
Data.” IEEE Transactions on Software Engineering 10, 3 (November 1984): 728-738.

[Basili 1988] Basili, Victor R. & Rombach, H. Dieter. “The TAME Project: Towards Improve-
ment-Oriented Software Environments.” IEEE Transactions on Software Engineering 14, 6 (June
1988): 758-773. IEEE, 1988.

[Boyd 2002] Boyd, A. “The Goals, Questions, Indicators, Measures (GQIM) Approach to the
Measurement of Customer Satisfaction with E-Commerce Web Sites.” Aslib Proceedings 54, 3
(2002): 177-187. MCB UP Ltd.

[Boyd 2010] Boyd, Andrew & Boyd, John A. “Thoughts on Evaluation of SME Strategic Rela-
tionships.” International Council for Small Business, 47th World Conference Proceedings. San
Juan, Puerto Rico, June 16-19, 2002. ICSB, 2002. http://sbaer.uca.edu/research/icsb/2002/038.pdf

[Briand 1996] Briand, L.; Differding, C. M.; & Rombach, H. D. “Practical Guidelines for Meas-
urement-Based Process Improvement.” Software Process Improvement and Practices 2, 4 (De-
cember 1996): 253-280.

[Crawford 2004] Crawford, Paul & Stephens, Mark. “Transitioning From Business Objectives to
Measurement Objectives.” Proceedings of the European SEPG 2004. London, England, June 14-
17, 2004. European Software Process Improvement Foundation, 2004.

[Hefner 2011] Hefner, Rick. “Process Improvement in the Aerospace Industry: CMMI and Lean
Six Sigma.” (Lecture for Computer Science 510, University of Southern California). 2011. sun-
set.usc.edu/classes/cs510_2011/ECs_2011/10USC%20Hefner%20CMMI%20LSS.pptx

http://sbaer.uca.edu/research/icsb/2002/038.pdf

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 155
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Rombach 1989] Rombach, H. Dieter & Ulery, Bradford T. “Improving Software Maintenance
Through Measurement.” Proceedings of the IEEE (PIEEE) 77, 4 (April 1989): 581-595.

[Vogt 2008] Vogt, Terry. “Goal-Driven Performance Measurement.” SEER User Conference, Re-
dondo Beach, CA, April 10, 2008. Golorath Inc., 2008. http://www.galorath.com/index.php/li-
brary/userconference2008

http://www.galorath.com/index.php/library/userconference2008
http://www.galorath.com/index.php/library/userconference2008

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 156
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 157
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

5 Security

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 158
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 159
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Figure 6: Security Timeline

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 160
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 161
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Introduction to Security

In the early days, security was not high on the list of issues facing software engineers, even for
those involved in DoD systems, except for those who developed software for classified systems.
At best, most used defensive techniques aimed at surviving mistakes users might make. They sel-
dom concerned themselves with the possibility that someone with malicious intent might subvert
their systems.

This was particularly true of the internet, which was spawned from the ARPANET [Leiner 2012,
Museum 2006]. The ARPANET began as a research-oriented development to offer packet switch-
ing as a new paradigm in network construction—it was a research project for researchers. The un-
derlying technology was developed with an open, trusting style. Everyone was expected to be a
friendly user. Indeed, there was a culture of cooperation and a willingness to contribute fixes for
common problems that was self-regulating.

Initially, the expansion of the ARPANET to the internet simply expanded the user community to a
broader segment of the research community. However, once the commercial potential was real-
ized, the rapid growth led to a user profile that more closely reflects the general population. Un-
fortunately, the general population includes mischievists, thieves, and criminals.

Several people, including those who developed the underlying technology, warned that the inter-
net was not intended to be secure and that there was a serious potential for abuse. Although
DARPA began investigating security solutions [FAS 2000], there was little concern among users
because there was no “smoking gun”—no indication that anyone would seriously attack the inter-
net or systems on the internet. While there were some attacks, there was still no clear indication of
a persistent threat and, therefore, no serious attention given to security.

 Genesis of the CERT Coordination Center

That ambivalence was rudely shaken on November 2, 1988, when a graduate student released a
worm on the internet [ACM 1989]. The Morris Worm (named for its inventor) brought the inter-
net to its knees. For the 72 hours after the release of the worm, the research community, coordi-
nated by two program managers at DARPA, reverse engineered the worm to understand how it
functioned, then began to provide advice to systems administrators on removing the worm. Com-
munication was hampered because the worm clogged the network, the primary means of commu-
nication for many sites. Moreover, many sites removed themselves from the ARPANET alto-
gether, further hampering communication and the transmission of the solution that would stop the
worm. Although the ad hoc collaboration of experts from around the country was effective in de-
feating the worm, DARPA realized that the worm, though destructive, was reasonably benign in
relation to havoc it might have wreaked if Morris had been more malicious. DARPA management
knew that there would certainly be more malicious attacks in the future and, the following week,
asked the SEI to propose a mechanism that would encourage and support collaboration among
technical experts in resolving security problems, and coordinate their response activities in the
event of future attacks against the internet and connected systems.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 162
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

DARPA and the SEI agreed that the SEI would set up a computer emergency response team (now
the CERT Coordination Center – CERT/CC) with the following operational concepts:25
• a non-government entity, a neutral broker, no regulatory authority

• needing access to key experts

• relying on previous trust relationships

• working with vendors to mitigate vulnerabilities

• building on DARPA’s position in the community using the SEI and Carnegie Mellon

• getting agreements in place to bypass bureaucracy

• forming a federation of computer security incident response teams modeled after the
CERT/CC

The original concepts have proved to be robust and scalable, and many of the early relationships
have endured.

Over the next few weeks, the CERT charter was hammered out. These are the terms of the char-
ter:

CERT is chartered to work with the internet community in detecting and resolving computer
security incidents, as well as taking steps to prevent future incidents. In particular, our mission
is to
• Provide a reliable, trusted, 24-hour, single point of contact for emergencies.

• Facilitate communication among experts working to solve security problems.

• Serve as a central point for identifying and correcting vulnerabilities in computer systems.

• Maintain close ties with research activities and conduct research to improve the security of
existing systems.

• Initiate proactive measures to increase awareness and understanding of information secu-
rity and computer security issues throughout the community of network users and service
providers.

• Serve as a model for other incident response organizations.

The CERT/CC began operating on December 6, 1988, with one SEI staff member and one admin-
istrative assistant, along with three part-time members “borrowed” from the IT department. Just
hours after DARPA announced the CERT/CC in a press release on December 12, 1988, the center
received its first hotline call reporting a security incident, and it released its first advisory before
the year’s end. The CERT/CC has never since been without an active incident; the activity only
increased as time went on [Howard 1997, Moitra 2004].

25 Private recollections of Larry Druffel and Bill Scherlis regarding an agreement between Druffel and

the DARPA deputy director. Many people contributed to the discussions behind the operational
concept, from the Livermore Labs response team, Defense Systems Information Agency (DISA),
National Computer Security Center (NCSC), and National Institute of Standards and Technology
(NIST), and from law enforcement agencies such as the Department of Justice, the Federal Bureau
of Investigation, the U.S. Secret Service, and others.

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-CERT-CC140109.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 163
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

The CERT/CC helps guard against devastating consequences from incidents by sharing its exper-
tise with government and other incident handlers and their managers, including US-CERT. The
CERT/CC protects the U.S. information infrastructure by providing technical assistance in repair-
ing compromised systems and limiting the damage caused by high-impact attacks. Access to com-
posite data enables the U.S. Department of Defense (DoD) and federal agencies to have a compre-
hensive view of attack methods, vulnerabilities, and the impact of attacks.

 Evolution of the CERT Division

In the years following CERT/CC’s establishment, the DoD and federal agencies became highly de-
pendent on the internet, as did businesses, including critical infrastructure providers. Moreover, they
moved away from proprietary software to adopt common information technologies. To better man-
age these changes, the CERT/CC began addressing a wider range of security issues, and the larger
CERT program was formed, later becoming a division. Through the CERT Division, the SEI devel-
ops and promotes the use of appropriate technology and systems management practices to resist at-
tacks on networked systems, to limit damage, and to ensure continuity of critical services.

 Range of Issues

Establishment of the CERT/CC was the SEI’s introduction to a broad range of software and net-
work security issues.

The first issue, in accord with the CERT charter, was incident response (IR). From the beginning
it was clear that the need for skilled incident responders and response organizations would grow.
In addition to serving as a key response organization, the CERT/CC took on the task of develop-
ing the mentoring and training programs, training delivery platforms, and cyber exercise plat-
forms that would scale to meet the growing workforce development need. After defining best
practices and sharing them with the IR community, the CERT/CC worked at the organizational
level then moved to the national level and its special technical IR needs; these activities included
helping to establish and providing ongoing support to US-CERT. Recognizing the need for a net-
work of incident responders, the CERT/CC was one of the founding members of the Forum of In-
cident Response and Security Teams (FIRST). Later, GFIRST was formed to meet the particular
needs of government CSIRTs (computer security incident response teams). In effect, the SEI not
only spawned this international collection of cooperating organizations, it has also been a leader
in coordinating technical support to evolving incidents throughout the world.

Perpetrators of incidents take advantage of vulnerabilities in software products, so another early
issue was vulnerability analysis, also called for in the CERT charter. This work began with col-
lecting and categorizing vulnerability reports and establishing working relationships with more
than 600 vendors to mitigate security problems responsibly. The CERT/CC then established an
initiative to develop vulnerability discovery tools and analysis techniques, then provide them to
vendors, leading to fewer vulnerabilities in released software as the vendors begin using them in
their software development process. As a result, DoD and others’ acquisition teams are assured of
more secure software products out of the box and increased resistance to attacks.

Collecting and analyzing malicious code was a logical next step as vulnerability analysts and inci-
dent responders saw “malcode” and “malware” toolkits exploiting vulnerabilities. The CERT/CC

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-CERT-CC140109.docx
https://collaboration.sei.cmu.edu/sites/Education_Training/EducationChapter/11-%20Cyber%20Workforce%20131011.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/3-VulAnalysis140109.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/4-MaliciousCode140117.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 164
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

collects over one million pieces of malicious code each month, entering the malware into its Arti-
fact Catalog. As incident responders deal with the growing frequency of malcode-based attacks,
they need the ability to analyze malicious coded packages quickly, determine the effects of the
malicious code, and understand how to mitigate those effects. Similarly, law enforcement agents
investigating cybercrimes need the ability to identify the source of malicious code attacks. The
CERT/CC has an ongoing effort to develop analysis techniques, tools, and the training to help
other responders and investigators increase their capability to research and mitigate malicious
code-based attacks. Automated tools significantly decrease analysis time and enable researchers,
analysts, and investigators to be increasingly effective at identifying and understanding malicious
code. As a result of CERT/CC work, federal agencies have recovered from serious cyber attacks
quickly and solved cybercrimes.

The CERT Secure Coding Initiative grew from the conviction that it is not sufficient to merely re-
spond to security compromises and the vulnerabilities behind them. Rather, vendors need to release
less vulnerable software in the first place. CERT secure coding guidelines and standards help devel-
opers prevent vulnerabilities by addressing them early in product development. Tools for analyzing
the code enable vendors to validate conformance to the standards. The result is more secure out-of-
the-box software products and protection for DoD, federal agency, and business systems. Secure
coding practices are in use by virtually all defense contractors as well as industry vendors.

DoD needs led to the development of network situational awareness tools, along with analysis
techniques for quantitatively characterizing threats and targeted intruder activity. At the time,
DoD security operations were driven by known issues that were dealt with in real time without
knowledge of the threat behind them. The DoD needed retrospective analysis with historical data
and a baseline of the Non-Secure Internet Protocol Router Network (NIPRnet) as a whole. CERT
toolsets are now in use at large operations centers in the DoD and the Department of Homeland
Security; the tools collect and analyze large volumes of data that enable analysts to understand
broad network activity and take appropriate action. US-CERT has used Einstein26 to meet statu-
tory and administrative requirements of DHS to help protect federal computer networks and the
delivery of essential government services. The CERT Division gains far-reaching influence with
open source tools and participation in Internet Engineering Task Force (IETF) working groups.

DoD interest in incidents by insiders—staff, former staff, and contractors—prompted the CERT Divi-
sion’s initial work on insider threat. CERT analysts realized just how critically serious insider threat is
when they met with the Olympic Committee on cyber aspects of the Salt Lake City Olympic Games, a
U.S. Secret Service National Special Security Event (NSSE). It formed a CERT insider threat group,
which collected hundreds of case studies of actual incidents and worked with federal law enforcement
profilers to examine both the technical and behavioral aspects. This research has expanded to specific
domains and types of attack, including espionage, enabling the recently established CERT Insider
Threat Center to provide more specific and actionable guidance. Using the center’s results, information
assurance staff and counterintelligence analysts have implemented technical controls for catching in-
siders. The DoD and federal civilian agencies are identifying insider threat proactively using SEI tech-
niques and tools instead turning to forensics after a crime.

26 Einstein is an intrusion detection system that monitors the network gateways of government depart-

ments and agencies in the United States for unauthorized traffic (en.wikipedia.org/wiki/Einstein).

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/5-SecureCoding140214.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/6-NetSA140114.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/7-InsiderThreat140120.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 165
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

The SEI concern about risks posed to national and economic security provided the impetus for
evaluation methods that give the DoD and other organizations a view of risk to their information
systems, along with practices for protecting those systems. OCTAVE is a suite of techniques,
methods, and tools for assessing information security risks to critical government and business as-
sets, the foundation for planning continuous risk management. A related assessment is Computer
Network Defense (CND) metrics, which focus on risks in CSIRT incident management. The U.S.
Army and Air Force use OCTAVE to help meet HIPPA regulations, and the technique has been
taught at DoD medical treatment facilities around the globe.

As part of its effort to influence product development, the SEI began looking at how to incorporate se-
curity early in the software development lifecycle. The Cybersecurity Engineering group focuses on
using engineering solutions to address this challenge. The DoD and federal agencies benefit from
frameworks and methods that support decisions from acquisition through operation, which organize
research and practice areas for building assured systems, and that guide measurement and analysis.
SQUARE (Security Requirements Engineering) gives developers a process for identifying security and
privacy requirements from the start; A-SQUARE, an addition to the SQUARE suite, aids in acquisi-
tion of stable products with security as an integral attribute rather than an add-on.

Future research and development will enable the CERT Division to keep up with changing tech-
nology, risks, attacks, and DoD software assurance needs.

 References

[ACM 1989] Communications of the ACM 32, 6 (June 1989): Entire issue devoted to the subject
of the Morris Worm. Example article: Eugene H. Spafford, “The Internet Worm: Crisis and After-
math:” 678-687.

[FAS 2000] Federation of American Scientists. “Blacker.” http://www.fas.org/irp/program/secu-
rity/blacker.htm (2000).

[Howard 1997] Howard, John D. “An Analysis of Security Incidents on the Internet 1989-1995.”,
PhD diss., Carnegie Mellon University, 1997. https://resources.sei.cmu.edu/library/asset-
view.cfm?assetID=52454

[Leiner 2012] Leiner, Barry M.; Cerf, Vinton G.; Clark, David D.; Kahn, Robert R., et al. “Brief
History of the Internet.” Internet Society. http://www.internetsociety.org/internet/internet-51/his-
tory-internet/brief-history-internet (2012).

[Moitra 2004] Moitra, Soumyo & Konda, Suresh. “An Empirical Investigation of Network At-
tacks on Computer Systems,” Computers and Security 23, 1 (February 2004): 43-51.

[Museum 2006] Computer History Museum. “Internet History.” http://www.computerhis-
tory.org/internet_history (2006).

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/8-OCTAVE140101.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/9-CSE-SWA140114.docx
http://www.fas.org/irp/program/secu-rity/blacker.htm
http://www.fas.org/irp/program/secu-rity/blacker.htm
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=52454
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=52454
http://www.internetsociety.org/internet/internet-51/his-tory-internet/brief-history-internet
http://www.internetsociety.org/internet/internet-51/his-tory-internet/brief-history-internet
http://www.computerhis-tory.org/internet_history
http://www.computerhis-tory.org/internet_history

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 166
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 CERT Coordination Center

The Challenge: Responding to Internet Security Incidents

In 1988, the ARPANET, a network set up primarily for academic and government researchers,
had its first automated network security incident, usually referred to as the Morris Worm [Goff
1999]. A student at Cornell University, Robert T. Morris, wrote a program that exploited several
vulnerabilities to copy itself and run on a second computer, with both the original code and the
copy, repeating these actions in an infinite loop to other computers on the ARPANET. This “self-
replicating automated network attack tool” caused a geometric explosion of copies to be started at
computers all around the ARPANET. The worm used so many system resources that the attacked
computers (10 percent of the network) could no longer function [Marsan 2008].

By that time, the ARPANET had grown to more than 88,000 computers and was the primary
means of communication among network security experts. With the ARPANET effectively down,
it was difficult to coordinate a response to the worm. Many sites removed themselves from the
ARPANET altogether, further hampering communication and the transmission of the solution that
would stop the worm.

Now, with nearly a billion hosts on the internet (July 2013), the potential impact of incidents can
be worldwide. Closer to home, there are 2,305,000 government (.gov) hosts and 2,592,000 mili-
tary hosts.27 With businesses, including critical infrastructures relying on computer systems, the
risk to the United States is great. It is essential to respond to incidents quickly and minimize the
damage [Kaplan 2011, Gupta 2010a, 2010b].

 A Solution: Coordinating Incident Response

The 1988 worm was a wake-up call. Following a series of meetings in Washington, DC, the
DARPA asked the SEI to immediately create a mechanism to give security experts a central point
for coordinating responses to security incidents and to help prevent incidents. The SEI worked
with DARPA program managers to develop the concept of the CERT Coordination Center.
DARPA agreed to fund the CERT/CC, charging the newly formed center with serving as a central
point for identifying and correcting vulnerabilities in computer systems, keeping close ties with
research activities and conducting research to improve security, and initiating “proactive measures
to increase awareness and understanding of information security and computer security issues
throughout the community of network users and service providers” [Fithen 1994].28

The CERT/CC received its first hotline call reporting a security incident just hours after DARPA
issued a press release announcing the center, and it published the first CERT advisory within a
month. The activity only increased as time went on [Howard 1997, Moitra 2004], as did the po-
tential damage from incidents; see, for example, articles by Hulme and by Stilgherrian [Hulme
2011, Stilgherrian 2011]. Recognizing the need for a network of incident responders, the
CERT/CC was one of the founding members of the Forum of Incident Response and Security

27 Internet Systems Consortium (ICS) Domain Survey (http://www.isc.org/services/survey).

28 Pressclips, a collection of articles published after the CERT/CC was formed, described the center
and evidence of the need for it.

http://www.isc.org/services/survey

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 167
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Teams (FIRST), which was formed in 1989 and now boasts 289 members worldwide (as of Janu-
ary 2013).29

In the early years, the CERT/CC staff responded to every incident report and worked closely with
individuals reporting incidents. This activity enabled the staff to understand the practices involved
in incident response and determine how to make them repeatable. Upon noticing that many people
made the same mistakes, the center began writing “tech tips” and checklists (an early tech tip was
a UNIX security checklist). By the mid-1990s, the CERT/CC had accumulated enough knowledge
and experience to codify processes and teach others how to do incident response, resulting in the
first training courses and a handbook for CSIRTs [West-
Brown 2003].30 The CERT/CC also assisted in the es-
tablishment of response teams; for example, CERT ex-
perts helped the Army with structure, organizational list-
ing, and training for ACERT, the Army’s incident
response team. After working at the organization level,
the CERT/CC moved to the national level and the na-
tion’s special technical needs. The center played a sig-
nificant role in the creation and continued evolution of
US-CERT, the national CSIRT for the United States,
and Q-CERT, the national CSIRT of Qatar. As industry
capacity grew, the CERT/CC focused more on codifying
best practices and growing capacity.

CERT/CC staff now helps loosely coordinate national
CSIRTS, supporting central points such as Information
Sharing and Analysis Centers (ISACs), and providing
operational coordination for critical infrastructure/key
resource (CIKR) led by the DHS and DoD. The
CERT/CC holds an annual technical meeting that helps
it effectively share knowledge and tools. Its location at
the SEI and Carnegie Mellon enables it to serve as a
neutral, trusted, third party to coordinate responses to
high-impact incidents across geographic, national, politi-
cal, and economic boundaries. The CERT/CC is concen-
trating on threats that affect national and economic secu-
rity, with a focus on government and critical infrastructure and on threats from the most serious
adversaries, especially threats that do not yet have a commercial solution. The center seeks ways
to identify threats and remediate them, concentrating on the technological cutting edge.

29 Information and a list of members are available at http://www.first.org.

30 Additional materials for CSIRTS are at http://www.cert.org/incident-management/csirt-develop-
ment/index.cfm.

The View from Others

Since CERT was formed it has
been a great help to me and my
several employers since that time.
I wish to thank you for your great
work!

– a physicist working in a
government institute of
science

Thanks to all of you – you’re doing
a great service to the information
security community. Keep up the
good work!

– an information security
officer

These online docs were very use-
ful. In fact the checklist was how
we found the network sniffer….

– a user of the Intruder
Detection Checklist

http://www.first.org
http://www.cert.org/incident-management/csirt-develop-ment/index.cfm
http://www.cert.org/incident-management/csirt-develop-ment/index.cfm

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 168
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 The Consequence: Knowledgeable Incident Responders, Coordinated
Response

The DoD and federal agencies are highly dependent on the internet, as are businesses, including
critical infrastructure operators. They can better guard against devastating consequences from in-
cidents because the CERT/CC shares its expertise with government and other incident handlers
and their managers. The U.S. information infrastructure is better protected because of access to
CERT/CC technical assistance in repairing compromised systems and limiting the damage caused
by high-impact attacks. A community of incident response practitioners is increasingly effective
at improving internet-connected systems’ resistance to attack as well as detecting and resolving
successful attacks on those systems.

 The SEI Contribution

Before the CERT Coordination Center was established, there were many security experts across
the country, including those who reverse engineered the Morris Worm and found a way to stop it.
The SEI contribution was to establish secure channels for sharing information and coordinating
response in the face of incidents that threaten networks and the information they carry. The
CERT/CC continues to reach out to existing experts and also to help others gain expertise. It
raises awareness in the government and elsewhere of security risks and the need to be prepared to
respond quickly and effectively to potentially devastating security breaches. The center was in-
strumental in forming a global network of incident responders, facilitating response to incidents
that cross national, political, and geographic boundaries.

 References

[DARPA 1988] Defense Advanced Research Projects Agency, Press release, December 13, 1988.

[Fithen 1994] Fithen, Katherine & Fraser, Barbara. “CERT Incident Response and the Internet.”
Communications of the ACM 37, 8: 108-113.

[Goff 1999] Goff, Leslie. “Technology Flashback: Worm Disables Net.” Computerworld (Octo-
ber 4, 1999): 78.

[Gupta 2010a] Gupta, Upsana. “Incident Response: Drafting the Team.” Banking Info Security.
November 5, 2010. http://www.bankinfosecurity.com/articles.php?art_id=3060

[Gupta 2010b] Gupta, Upsana. “Incident Response: 5 Critical Skills.” Banking Info Security. No-
vember 4, 2010. http://www.bankinfosecurity.com/articles.php?art_id=4214&pg=1

[Howard 1997] Howard, John D. “An Analysis of Security Incidents on the Internet 1989-1995.”
PhD diss., Carnegie Mellon University, 1997.

[Hulme 2011] Hulme, George V. “Medical Data Breaches Soar, According to Study.” CSO. De-
cember 2, 2011. http://www.cso.com.au/article/409040/medical_data_breaches_soar_accord-
ing_study

[Kaplan 2011] Kaplan, Dan. “Major Breach: Ground Control.” SC Magazine. September 8, 2011.
http://www.scmagazine.com.au/Feature/271380,major-breach-ground-control.aspx

http://www.bankinfosecurity.com/articles.php?art_id=3060
http://www.bankinfosecurity.com/articles.php?art_id=4214&pg=1
http://www.cso.com.au/article/409040/medical_data_breaches_soar_accord-ing_study
http://www.cso.com.au/article/409040/medical_data_breaches_soar_accord-ing_study
http://www.scmagazine.com.au/Feature/271380

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 169
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Killcrece 2008] Killcrece, Georgia; Zajicek, Mark; & Ruefle, Robin. “Creating and Managing
Computer Security Incident Response Teams (CSIRTS)” (tutorial). 20th Annual FIRST Confer-
ence, June 20-27 2008, Vancouver, Canada.

[Marsan 2008] Marsan, Carolyn Duffy. “Morris Worm Turns 20: Look What It’s Done.” Network
World. October 30, 2008. http://www.networkworld.com/news/2008/103008-morris-worm.html

[Moitra 2004] Moitra, Soumyo & Konda, Suresh. “An Empirical Investigation of Network At-
tacks on Computer Systems.” Computers and Security 23, 1: 43-51.

[Stilgherrian 2011] Stilgherrian. “LulzSec, WikiLeaks, Murdock: Hacking’s Fourth Wave.” CSO
Online. August 8, 2011. http://www.cso.com.au/article/396368/lulzsec_wikileaks_murdoch_hack-
ing_fourth_wave/#closeme

[West-Brown 2003] West Brown, Moira; Stikvoort, Don; Kossakowski, Klaus-Peter; Killcrece,
Georgia; Ruefle, Robin; & Zajicek, Mark. Handbook for Computer Security Incident Response
Teams (CSIRTs) (CMU/SEI-2003-HB-002). Software Engineering Institute, Carnegie Mellon
University, 2003. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6305

http://www.networkworld.com/news/2008/103008-morris-worm.html
http://www.cso.com.au/article/396368/lulzsec_wikileaks_murdoch_hack-ing_fourth_wave/#closeme
http://www.cso.com.au/article/396368/lulzsec_wikileaks_murdoch_hack-ing_fourth_wave/#closeme

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 170
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Vulnerability Analysis and Remediation

 The Challenge: Software Vulnerabilities

In producing software products, engineers unintentionally create vulnerabilities. When the prob-
lems are discovered before a compromise—perhaps by researchers or the vendors themselves—
organizations and individuals have a chance to protect their systems from attack. When vulnera-
bilities are discovered by people with malicious intent, the result can vary from inconvenient to
disastrous [CIOinsight 2011]. Attackers, who once worked alone, share techniques and tools [Pol-
lak 1998], and they are quick to adapt their tools to exploit newly disclosed vulnerabilities. Some
attacks are used in business or warfare, for raising money and for undermining competitors/adver-
saries [Shimeall 2001].

The DoD, federal agencies, and physical critical infrastructures have become increasingly ex-
posed to software vulnerabilities, and it is increasingly important for them to respond quickly.
Every organization that evaluates vulnerability reports must invest valuable time, often duplicat-
ing others’ efforts; failure to respond to vulnerabilities in an appropriate, timely manner puts the
organization at greater risk. Comprehensive configuration control and patch management remains
a challenge for large enterprises. The problem has international aspects: software is produced all
over the world and used in the U.S., and compromised computers outside the U.S. present risks to
the U.S. infrastructure.

 A Solution: Vulnerability Analysis, Remediation, and Discovery

The CERT/CC charter includes the charge to serve as a central point for identifying and correct-
ing vulnerabilities in computer systems. Vulnerability analysis goes hand-in-hand with incident
handling since understanding the vulnerability may guide the recovery process and prevent future
compromises. Soon after the CERT/CC began operations at the SEI, it set up secure channels for
reporting vulnerabilities, and it formed trusted working relationships with vendors in case a vul-
nerability is discovered. It raised awareness of software development practices to improve and en-
couraged releasing software with more secure default configurations. As a neutral third party, the
CERT/CC could report vulnerabilities to vendors without revealing the identity of the reporter and
could work with competing vendors whose products contain the same vulnerability. In 2012, the
CERT/CC had trusted interactions with more than 600 technology vendors. System administrators
and users benefit. They need to know if patches are available and to what extent they address the
vulnerability. If patches are not available, they need interim strategies that help mitigate the im-
pact on vulnerable systems. The CERT/CC has always taken care to disclose information about
security weaknesses in a way that minimizes the chances of subsequent compromise through that
flaw, releasing information that balances the community’s need to protect systems and the ven-
dors’ need for time to develop and test solutions.

The CERT/CC wrote a vulnerability disclosure policy that considers these equities. This policy
provides a vendor 45 days to remediate a problem prior to public disclosure. Vendors can request
more time before public disclosure if a particular vulnerability is complicated to fix. However, if
there is active exploitation of a vulnerability, it will be disclosed. Since 2000, the CERT/CC has
facilitated mitigation of vulnerabilities and disseminated the information through the publication
of products called vulnerability notes.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 171
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

The CERT/CC built on its vast collection of data to create a knowledgebase31 that addresses the
challenges of how to structure, distribute, and maintain security incident and vulnerability infor-
mation in a useful form. Work on the knowledgebase began in 1996 with funding from the Air
Force Materiel Command, Rome Laboratory, to build a prototype. The resulting work captured
the interest of additional sponsors, and the Air Force Information Warfare Center sent associates
to the SEI to work with CERT/CC staff to gain expertise to take back to their organizations.

After chronicling the same implementation flaws repeatedly for more than 15 years, the CERT ex-
perts began developing vulnerability discovery tools to help reduce the number of vulnerabilities
in software before it is deployed. Starting with ActiveX,
they developed the Dranzer tool and released it to ven-
dors in 2006 and to the open source community in 2009.
They also published a paper describing the history, mo-
tivations, and rationale for Dranzer, along with early re-
sults [Dormann 2008]. In 2010, they released the Basic
Fuzzing Framework (BFF) to help developers and test-
ers apply effective black-box fuzz testing to their soft-
ware. Another tool, Failure Observation Engine (FOE),
performs on Windows systems the same functions as the
BFF. Additionally, CERT triage tools assist software
vendors and analysts in identifying the impact of defects
discovered through techniques such as fuzz testing. The
CERT/CC continues to develop and test tools on current
software. The goal is to provide vendors with user-
friendly, efficient tools and techniques they can incorpo-
rate into their development process and prevent vulnera-
bilities before release.

 The Consequence: Improved Vendor
Practices, Well-Informed System
Mangers

Vendors’ practices have improved, resulting in the im-
proved security of their products. With CERT/CC influ-
ence, vendors have not only improved their development
practices, but they also provide safer default configura-
tions and free, broad distribution of security updates.
Also, the use of vulnerability discovery tools is leading
to fewer vulnerabilities in released software. Several
software vendors have told CERT staff privately that they either have or plan to incorporate Dran-
zer and/or BFF into their software development practices; one company’s job description noted a
preference for those with Dranzer experience.

31 For a brief description, see http://www.cert.org/vulnerability-analysis/knowledgebase/index.cfm.

The View from Others

(These comments are from users
of CERT publications and
knowledgebase; identities are
protected.)

Thanks for the heads up.....you
people are the greatest...in partic-
ular, this last one sewed up a hole
that was literally a breach in front
lines for our team, so speak.

– a system administrator

Thank you for providing a wonder-
ful mechanism for tracking and
notification concerning system vul-
nerabilities.

– a corporate webmaster

We have seen several potential de-
fects revealed using Dranzer. It is
certainly a useful tool, well docu-
mented, and really easy for an en-
gineer to use.

– a technical staff member of
a large technology
vendor

http://www.cert.org/vulnerability-analysis/knowledgebase/index.cfm

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 172
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

System and network administrators and managers are now better informed. They use the data
CERT/CC provides from its incident and vulnerability work to prioritize their security improve-
ment efforts and focus on areas that are known to be vulnerable to attack. With this data, they are
aware of the current state of information security products, system management and security prac-
tices, and intruder methods. The U.S. government’s access to the composite data enables the DoD
and federal agencies to have a comprehensive view of attack methods, vulnerabilities, and the im-
pact of attacks on information systems and networks.

 The SEI Contribution

The SEI, through its CERT/CC, filled the gap in the 1990s, when major vendors released little vul-
nerability information. Previously, there was some uncoordinated work on vulnerabilities by ven-
dors and researchers; and system and network administrators sometimes worked with vulnerabilities
on their own, primarily in response to exploitation. The CERT/CC connected vulnerability research-
ers to vendors and reduced duplicate efforts by individual groups. The CERT/CC’s neutrality and
credibility gave both vulnerability reporters and vendors confidence that the information they pro-
vided was treated with discretion. The center’s position also enabled it to coordinate vulnerabilities
affecting products of multiple vendors. Importantly, it pioneered “responsible disclosure.”

The CERT/CC’s early interactions with technology vendors helped to increase vendor sensitivity
to security requirements and improve the security of their products, including basic, as-shipped
products. In addition, vendors originally intended to charge users for security updates; the
CERT/CC was instrumental in vendors’ current practice of providing free updates and issuing
bulletins. Vendors now issue their own bulletins, and information sources such as the National
Vulnerability Database (NVD)32 are available. Thus, the CERT/CC can concentrate on vulnerabil-
ities with critical impact on the U.S. economy, information infrastructure, and national security
and can focus on techniques and tools to enhance vulnerability discovery.

 References

[CIOinsight 2011] CIOinsight. “UBS Rogue Trader: An Enterprise Security Wake-Up Call.” CI-
Oinsight, September 16, 2011. http://www.cioinsight.com/c/a/Latest-News/UBS-Rogue-Trader-
Underscores-Insider-Threats-Facing-Enterprises-368962/?kc=rss

[Dormann 2008] Dormann, Will & Plakosh, Dan. “Vulnerability Detection in ActiveX Controls
through Automatic Fuzz Testing.” Software Engineering Institute, Carnegie Mellon University,
2008. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=53466

[Pollak 1998] Pollak, Bill. “Interview with Rich Pethia,” news@sei. Software Engineering Insti-
tute, Carnegie Mellon University, 1998. http://www.sei.cmu.edu/library/abstracts/news-at-
sei/spotlightdec98.cfm

[Shimeall 2001] Shimeall, Timothy, Williams, Phil, & Dunlevy, Casey. “Countering Cyber War.”
NATO Review 49, 4 (Winter 2001): 16-18.

32 The NVD can be found at nvd.nist.gov.

http://www.cioinsight.com/c/a/Latest-News/UBS-Rogue-Trader-Underscores-Insider-Threats-Facing-Enterprises-368962/?kc=rss
http://www.cioinsight.com/c/a/Latest-News/UBS-Rogue-Trader-Underscores-Insider-Threats-Facing-Enterprises-368962/?kc=rss
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=53466
http://www.sei.cmu.edu/library/abstracts/news-at-sei/spotlightdec98.cfm
http://www.sei.cmu.edu/library/abstracts/news-at-sei/spotlightdec98.cfm

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 173
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Malicious Code Analysis

 The Challenge: Malicious Code

Malicious code,33 or malware, has affected the DoD, including the Pentagon and federal agencies,
for well over a decade [Brewin 1999, Verton 1999, Ruppe 2001]. Retail businesses, banks, and a
stock exchange have all been victims. Attackers have developed hundreds of thousands of pieces
of malicious code; some well-publicized early ones were known as Melissa, LoveLetter, Nimda,
and Code Red. Viruses have affected an estimated two-thirds of Fortune 500 companies and cost
victims billions of dollars in productivity [Frontline 2000].

Malicious code exploits software vulnerabilities. However, in the 1990s, the community had not
matured to the point of sharing tools and techniques, and doing cross mentoring. Only a few peo-
ple had strong skills in reverse engineering malicious code to understand how it works; and rather
than work together, they seemed to compete.

 A Solution: Malicious Code Database and Analysis

In the late 1990s, the CERT/CC at the SEI began studying the malicious software that got into sys-
tems through vulnerabilities and social engineering—tricking people into actions that allowed mal-
ware onto their computers. The CERT/CC security experts had already become skilled at analyzing
software vulnerabilities. The malicious code work was prompted by CERT/CC incident responders’
seeing the role malware played in computer security incidents. By 2000, malicious code was explod-
ing, and the staff began more thorough analysis efforts [Bair 1999]. In dissecting malware, they
compiled a wealth of information not only about malicious code but also about how technology
fails, what assets adversaries target, how they acquire targets, and who the adversary is.

The CERT/CC began building a database, which became known as the Artifact Catalog,34 a re-
pository of malicious code and related analysis that informs triage decisions and provides a basis
for cross-threat analysis. The malware analysts also worked to establish relationships within the
security community: for example, by raising awareness at professional conferences and by work-
ing with experts through email. This visibility led to government interest and funding for the SEI
malicious code work. Congress had become interested in solving the problem of malicious code
and heard testimony on the subject. One of those testifying was tasked with “doing something”
regarding malware, and the CERT Artifact Catalog proved to be the answer to that charge. Fund-
ing subsequently followed, allowing the work to grow.

The CERT/CC created a separate, focused malicious code team, which had these primary goals:
(1) improve approaches to reverse engineering, (2) bring those doing reverse engineering together
into a community that would work collaboratively and learn from each other, and (3) reduce du-
plicate work in the community to make effective and efficient use of limited resources, as well as

33 Malicious code is a form of cyber “tradecraft” used by adversaries to subvert the security posture

and compromise the assets of organizations.

34 The original intent of the catalog was to collect things left behind on an attacked machine, which
the staff referred to as artifacts. These artifacts included malicious code but also logs and other
files or items left behind by an intruder.

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/3-VulAnalysis140109.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/3-VulAnalysis140109.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-CERT-CC140109.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 174
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

understand the relationship among the various groups in the community. They defined the follow-
ing plan of work and are implementing it successfully.
1. Bring reverse engineers together in workshops, training, and mentoring sessions to allow

them to learn from each other and to increase the skills and capabilities of reverse engineers
with less experience. The team held its first invitational Malicious Code Workshop in October
2004 to discuss the top challenges in malware. By 2012, they had held seven Malicious Code
Workshops and seven Malicious Code Training Workshops, the latter focusing on sharing
analysis techniques.

2. Build a set of tools and processes to collect malicious code and make that collection available
to collaborators so that the number of collection infrastructures can be minimized, particularly
within the U.S. government. A catalog of malicious code and analysis processes was devel-
oped and is available to malware analysts and researchers. Development and analysis con-
tinue. The limited-access Artifact Catalog contained more than 80 million files in January
2013, with typically a million new samples ingested weekly.

3. Automate as many analysis functions as possible so limited resources can be spent on only
the novel and the most important malware samples. Reverse engineering is a time-consuming
technique—an analyst dissects every instruction in the malware. The SEI malware experts
have codified some of their reverse engineering expertise into automated tools, which they
share with other analysts in the DoD and intelligence community. The SEI analysts use the
tools themselves for research and to fulfill requests from government agencies. The team re-
fines the tools and develops additional ones in the process [Householder 2011; Cohen 2009,
2010].

 The Consequence: Faster Response to Malicious Code Attacks, Better
Control

Malware analysts at government operation centers have advanced tools, shortening their response
times; they also have specialized analytical support from the SEI through the CERT/CC artifact
analysis team. The Artifact Catalog provides them with an extensive collection of malicious code
that supports trending and related research. The automated tools significantly decrease analysis
time and enable analysts and researchers to be increasingly effective at identifying and under-
standing malicious code—understanding that is essential to gaining control over attacks and limit-
ing the damage they cause. The result is increased safety for U.S. government and agency sys-
tems.

By providing analysis and serving as expert witnesses [Poulsen 2008, Ove 2010, Cruz 2011], SEI
malicious code experts have helped to shut down and apprehend a major identity theft and fraud
ring, whose activities caused more than $4 million in losses, and helped convict a perpetrator of
wire fraud that cost financial institutions an estimated $86 million [Mills 2009].

 The SEI Contribution
The SEI Malicious Code team has collaborative relationships with both the DoD and the intelli-
gence community. Because of the CERT/CC malware work, SEI collaborators and sponsors have
the tools and education needed to streamline analysis and more quickly answer specific questions.
The SEI has been a resource to build new capabilities in the U.S. government. Its malware experts

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 175
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

have put advanced tools in the hands of malware analysts at government operation centers, short-
ening their response times, and have also provided specialized analytical support to federal agen-
cies. It fosters research with the Artifact Catalog and serves as a neutral third party for collecting,
categorizing, and analyzing malware.

The SEI has reached out to the community, bringing disparate groups together to collaborate on
identifying significant issues and sharing tools and techniques. The Malicious Code Workshops
give experts a forum for sharing information and techniques and also help build a community.
The SEI malware experts have reached more than 1,100 people through the Malicious Code
Workshops and have reached even more through professional conferences, meetings with individ-
ual government agencies/departments, and email.

 References

[Bair 1999] Bair, Jeffrey, Associated Press. “Virus Fighters Eye How, Not Who.” The Indiana
Gazette, (April 9, 1999): 9. Archived at http://www.newspaperarchive.com/SiteMap/FreePdfPre-
view.aspx?img=112050250

[Brewin 1999] Brewin, Bob & Verton, Daniel. “Melissa Tests DoD Procedures.” Federal Com-
puter Week, 1999. https://fcw.com/articles/1999/04/11/melissa-tests-dod-procedures.aspx

[Cohen 2009] Cohen, C. & Havrilla J. “Malware Clustering Based on Entry Points.” CERT Re-
search Annual Report 2008. Software Engineering Institute, Carnegie Mellon University, 2009.
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=54240

[Cohen 2010] Cohen, C. & Havrilla J. “Function Hashing for Malicious Code Analysis,” CERT
Research Annual Report 2009. Software Engineering Institute, Carnegie Mellon University, 2010.
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=51314

[Cruz 2011] Cruz, Natalie. “Internet Hacker Bruce Raisley Gets Prison for Creating Botnet Com-
puter Virus.” Newsroom New Jersey, April 17, 2011. http://www.newjerseynewsroom.com/sci-
ence-updates/internet-hacker-bruce-raisley-gets-prison-for-creating-botnet-computer-virus (2011).

[Frontline 2000] Power, Richard. “The Financial Costs of Computer Crime.” Interviews with se-
curity experts. http://www.pbs.org/wgbh/pages/frontline/shows/hackers/risks/cost.html (2011).

[Householder 2011] Householder, Alan. “Announcing the CERT Basic Fuzzing Framework 2.0.”
CERT/CC Blog February 28, 2011. http://www.cert.org/blogs/certcc/post.cfm?EntryID=66

[Mills 2009] Mills, Elinor. “‘Iceman’ Pleads Guilty in Credit Card Theft Case.” CNET. June 29,
2009. http://news.cnet.com/8301-1009_3-10275442-83.html (2009).

[Ove 2010] Ove, Torsten. “Prolific Computer Hacker Gets 13 Years in Prison.” Pittsburgh Post-
Gazette (February 12, 2010). http://www.post-gazette.com/nation/2010/02/12/Prolific-computer-
hacker-gets-13-years-in-prison/stories/201002120174

[Poulsen 2008] Poulsen, Kevin. “Feds Charge 11 in Breaches at TJ Maxx, OfficeMax, DSW, Oth-
ers.” Wired. August, 5, 2008. http://www.wired.com/threatlevel/2008/08/11-charged-in-m/

[Ruppe 2001] Ruppe, David. “Hit by Virus, Pentagon Web Site Access Blocked.” ABC News.
July 23, 2001. http://abcnews.go.com/International/story?id=80758&page=1#.Tw8C0vKyBac

http://www.newspaperarchive.com/SiteMap/FreePdfPreview.aspx?img=112050250
http://www.newspaperarchive.com/SiteMap/FreePdfPreview.aspx?img=112050250
https://fcw.com/articles/1999/04/11/melissa-tests-dod-procedures.aspx
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=54240
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=51314
http://www.newjerseynewsroom.com/sci-ence-updates/internet-hacker-bruce-raisley-gets-prison-for-creating-botnet-computer-virus
http://www.newjerseynewsroom.com/sci-ence-updates/internet-hacker-bruce-raisley-gets-prison-for-creating-botnet-computer-virus
http://www.pbs.org/wgbh/pages/frontline/shows/hackers/risks/cost.html
http://www.cert.org/blogs/certcc/post.cfm?EntryID=66
http://news.cnet.com/8301-1009_3-10275442-83.html
http://www.post-gazette.com/nation/2010/02/12/Prolific-computer-hacker-gets-13-years-in-prison/stories/201002120174
http://www.post-gazette.com/nation/2010/02/12/Prolific-computer-hacker-gets-13-years-in-prison/stories/201002120174
http://www.wired.com/threatlevel/2008/08/11-charged-in-m/
http://www.wired.com/threatlevel/2008/08/11-charged-in-m/

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 176
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Verton 1999] Verton, Daniel. “Melissa Takes Down Marine Corps E-mail.” Federal Computer
Week. March 31, 1999.
http://www.cnn.com/TECH/computing/9903/31/melissamarine.idg/index.html (1999).

http://www.cnn.com/TECH/computing/9903/31/melissamarine.idg/index.html

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 177
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Secure Coding

 The Challenge: Preventing Software Vulnerabilities

Software vulnerabilities open the Department of Defense, other federal agencies, and businesses
to attacks that could compromise their systems’ integrity or expose or modify their critical infor-
mation. Software vulnerabilities also put our nation’s critical infrastructure at risk. Successful ex-
ploitation of these vulnerabilities has severe consequences: financial loss, loss or compromise of
sensitive data, damage to critical systems, and loss of productivity.

The traditional, reactive approach of mitigating software
vulnerabilities after the product’s release is expensive
and leaves software users exposed and, frequently, com-
promised until a patch is released—if customers can
keep up with patches at all. Some vulnerabilities are
never patched. Preventing the introduction of software
vulnerabilities during software development is a proac-
tive, efficient way to reduce risk before the software is
ever deployed.

 A Solution: Secure Coding Standards
and Practices

The CERT/CC has analyzed and cataloged thousands of
software vulnerabilities and discovered that many share
the same common errors. Deficient or error-prone con-
structs in the programming languages were frequently a
factor. In 2003, the SEI formed the Secure Coding Initi-
ative, whose goals were to enumerate errors in coding
that can result in software vulnerabilities and to develop
and promote mitigation strategies.35 By engaging more
than a thousand security researchers, language experts,
and software developers, the initiative produced secure
coding standards for common software development
languages such as C and Java. These standards guide
programmers to avoid coding errors that lead to vulnera-
bilities; the standards also provide solution examples.
Having standards encourages programmers to follow
uniform coding rules and guidelines determined by the
requirements of a project or organization, rather than by
personal coding preferences or familiarity.

35 Details about the work of the Secure Coding Initiative can be found at http://www.cert.org/secure-

coding.

The View from Others

We are thrilled to be the first com-
pany to deliver a CERT C compli-
ant programming checker as we be-
lieve this new standard will play a
significant role in the development
of higher quality systems that are
more robust and more resistant to
attack.

– Ian Hennell, LDRA
Operations Director

 [Businesswire 2008]

I’m an enthusiastic supporter of the
CERT Secure Coding Initiative.
Programmers have lots of sources
of advice on correctness, clarity,
maintainability, performance, and
even safety. Advice on how specific
language features affect security
has been missing. The CERT® C Se-
cure Coding Standard fills this
need.

– Randy Meyers,
Chairman of ANSI C
[Seacord 2013]

http://www.cert.org/secure-coding
http://www.cert.org/secure-coding

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 178
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Secure coding standards give developers a known good model to which they can compare their
code. The SEI’s proof-of-concept Source Code Analysis Laboratory (SCALe) combines multiple
analyzers to compare clients’ code to the C and Java secure coding standards. If the code con-
forms to the standards, the SEI issues the developer a
formal certificate.

The SEI has been active in the evolution of existing lan-
guage standards. An SEI secure coding expert chaired
the PL22.11 C Programming Language Task Group of
the International Committee for Information Technology
Standards (INCITS). In 2011, ISO/IEC 9899:2011 [ISO
2011], the first major revision of the C language specifi-
cation since 1999, incorporated several proposals from
the Secure Coding Initiative to improve the security of
the C language. The SEI experts have also been active in
C++ standardization as well as other working groups and
steering committees within the joint technical committee
set up between the International Organization for Stand-
ardization (ISO) and International Electrotechnical Com-
mission (IEC) to develop worldwide Information and
Communication Technology (ICT) standards.

Addison-Wesley has published the secure coding stand-
ards for C and Java as books [Seacord 2008, Long
2011], as well as Java coding guidelines [Long
2013].The Secure Coding Initiative continues to evolve
the standards for these languages. The SEI work has
taken on new significance with Section 925 of the Na-
tional Defense Authorization Act for Fiscal Year 2013,
which requires evidence that the coding practices of
government software development and maintenance or-
ganizations and contractors conform to secure coding
standards approved by the DoD. Section 925 applies to
coding practices during software development, upgrade,
and maintenance.

The SEI Secure Coding Initiative is now leading a com-
munity effort to develop the secure coding standards for
other common programming languages. Draft versions
of C++ and Perl language standards are available, and
secure coding standards for other languages, including
Ada, SPARK, and C#, are in the stages of development.

The SEI’s ultimate goal is to help developers make their
software less vulnerable before it is released. To this

The View from Others

In the Java world, security is not
viewed as an add-on a feature. It
is a pervasive way of thinking. ….
A set of standard practices has
evolved over the years. The Se-
cure® Coding® Standard for
Java™ is a compendium of these
practices. These are not theoreti-
cal research papers or product
marketing blurbs. This is all seri-
ous, mission-critical, battle-
tested, enterprise-scale stuff.

– James A. Gosling,
Father of the Java
Programming Language
[Long 2013]

CERT C/C++ Secure Coding
Standard as the internal secure
coding standard for all C/C++
developers. It is a core compo-
nent of our secure development
lifecycle. The coding standard de-
scribed in this book breaks down
complex software security topics
into easy to follow rules with ex-
cellent real-world examples. It is
an essential reference for any de-
veloper who wishes to write se-
cure and resilient software in C
and C++.

– Edward D. Paradise, VP
Engineering, Threat Re-
sponse, Intelligence, and
Development, CISCO.
[Seacord 2008]

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 179
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

end, the SEI has developed training courses on secure coding and is working with the software de-
velopment community to eliminate barriers to the broader adoption of the secure coding stand-
ards.

 The Consequence: More Secure Products

One of the Secure Coding Initiative’s farthest-reaching effort was its contribution to the ISO/IEC
C-language specification. C language compilers, which C language developers use to compile
their code, are based on the ISO/IEC C-Standard; so the initiative’s security contributions to the
specification will propagate to countless software products. The U.S. military, other government
agencies, and system developers from industry have adopted CERT secure coding standards, and
Siemens and Computer Associates have licensed the SEI’s training courses on secure coding in C
and C++. Many others have taken the SEI courses, in-
cluding the Department of Homeland Security, Depart-
ment of Energy, National Security Agency, Central In-
telligence Agency, U.S. Navy, Cisco, and the Center for
Financial Technologies in Russia.

Conformance testing helps influence the development
community from the top down by giving software ven-
dors the opportunity to turn technical success into busi-
ness success. The SEI-issued “Conformance Tested”
seal, indicating a developer’s standard-conformant soft-
ware, can be used by a vendor to promote the product,
increasing the market value of provably more secure
code.

Courses based on the Secure Coding in C and C++
book [Seacord 2013] are taught at major universities and
colleges; for example, Carnegie Mellon, Purdue, Stan-
ford, Stevens Institute, University of Florida, University of Illinois, University of Pittsburgh, and
University of Texas. Finally, TSP-Secure, an extension of TSP, requires the selection of coding
standards during the requirements phase; TSP teams use application conformance testing as part
of their own development process.

 The SEI Contribution

Other organizations have also done work in secure software. For example, the MITRE Corp. has
developed the Common Weakness Enumeration (CWE), a compilation of common software
weaknesses, mapped to the CERT secure coding standards. The latest C Standard includes
changes proposed by the Secure Coding Initiative to improve C-language security, which should
be implemented by the more than 200 C compilers that conform to the C Standard. The SEI Se-
cure Coding Initiative’s work has also influenced a variety of code analyzer vendors, including
LDRA (see “View from Others,” above).

While the SEI’s work in the C programming language has had the most public impact on software
development, the secure coding standard for Java has also made significant contributions. Im-

The View from Others

A must-read for all Java develop-
ers....Every developer has a re-
sponsibility to author code that is
free of significant security vulnera-
bilities. This book provides realis-
tic guidance to help Java develop-
ers implement desired
functionality with security, relia-
bility, and maintainability goals in
mind.

– Mary Ann Davidson, Chief
Security Officer, Oracle
Corporation [Long 2013]

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 180
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

provements in how developers use both languages have propagated to countless software prod-
ucts, including many in the DoD supply chain. The SEI secure coding experts also participated in
the C Secure Coding Rules Study Group, whose work resulted in the publication of ISO/IEC TS
17961(E), Information Technology—Programming Languages, Their Environments and System
Software Interfaces—C Secure Coding Rules. The Secure Coding Initiative’s engagement with
such international standards bodies improves the initiative’s standards, processes, and influence.

 References

[Businesswire 2008] “LDRA Ships New TBsecure™ Complete with CERT C Secure Coding
Programming Checker.” Businesswire, October 27, 2008. http://www.business-
wire.com/news/home/20081027005019/en/LDRA-Ships-TBsecure-TM-Complete-CERT-Secure

[Dobbs 2009] “Secure Coding in C and C++.” Dr. Dobb’s Journal. September 3, 2009.
http://drdobbs.com/cpp/219501214

[ISO 2011] International Standards Organization & International Electrotechnical Commission.
“Programming Languages—C,” International Standard 9899:2011. http://www.open-
std.org/jtc1/sc22/wg14/www/docs/n1570.pdf (2011).

[Keizer 2011] Keizer, Gregg. “Hackers Launch Millions of Java Exploits.” Computerworld, No-
vember 19, 2011. http://www.infoworld.com/article/2621397/security/microsoft--hackers-launch-
millions-of-java-exploits.html

[Long 2011] Long, Fred; Mohindra, Dhruv; Seacord, Robert C.; Sutherland, Dean F.; & Svoboda,
David. The CERT Oracle Secure Coding Standard for Java. Addison-Wesley, 2011 (ISBN
0321803957).

[Long 2013] Long, Fred; Mohindra, Dhruv; Seacord, Robert C.; Sutherland, Dean F.; & Svoboda,
David. Java Coding Guidelines: 75 Recommendations for Reliable and Secure Programs. Addi-
son Wesley Professional, 2013 (ISBN 0-321-93315-X).

[Seacord 2008] Seacord, Robert C. The CERT C Secure Coding Standard. Addison Wesley Pro-
fessional, 2008 (ISBN 0321563212).

[Seacord 2013] Seacord, Robert C. Secure Coding in C and C++, 2nd Edition. Addison Wesley
Professional, 2013 (ISBN 0321822137).

http://www.businesswire.com/news/home/20081027005019/en/LDRA-Ships-TBsecure-TM-Complete-CERT-Secure
http://www.businesswire.com/news/home/20081027005019/en/LDRA-Ships-TBsecure-TM-Complete-CERT-Secure
http://drdobbs.com/cpp/219501214
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.infoworld.com/article/2621397/security/microsoft--hackers-launch-millions-of-java-exploits.html
http://www.infoworld.com/article/2621397/security/microsoft--hackers-launch-millions-of-java-exploits.html

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 181
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Network Situational Awareness

 The Challenge: Visibility of Large Networks

Operators of networks of any size struggle to understand the activity on it. The challenge is to un-
derstand what data needs to be captured, how that data should be collected, how that data should
be stored, and ultimately how that data can be effectively analyzed to produce valuable metrics
and identify problems.

 A Solution: Network Situational Awareness Tools and Techniques

SEI network situational awareness (NetSA) experts develop ways to assist operators and analysts
in understanding activity on their networks by using meaningful pictures of their large volumes of
data. In developing an operational view of network attacks and network baselines and uncovering
anomalies, the SEI has developed standards for describing network traffic, designed sensors and
analysis tools, and uses both existing and SEI-developed network flow and intrusion detection
technology.

In the early 1990s, the CERT Coordination Center at the SEI developed Argus, one of the first
software-based network flow analysis tools, to support incident response activity. Argus provided
a practical means to summarize full packet capture for security purposes and ultimately was used
in traffic engineering.36 In 2000, the Automated Incident Reporting to CERT (AirCERT) initiative
released data conversion, sharing, and analysis tools (Analysis Console for Incident Data—
ACID); improved open-source sensors (snort); and supported the development of Internet Engi-
neering Task Force (IETF) standards establishing a data format for exchanging information on
computer security incidents among response teams around the world.37 The Department of De-
fense adopted SEI technologies in DoD-CERT, and General Services Administration’s FedCIRC
piloted them in federal civilian agencies. The concept of normalizing event data from different
sources matured into the security information and event manager market, and the notion of col-
lecting data from different organizations is known today as the security intelligence market.

In 2001, the SEI revisited network flow analysis by building the System for Internet Level
Knowledge (SiLK) tool suite for the DoD to conduct security analysis not driven by known-bad
signatures. The tool suite is a scalable system that enabled network forensics for all internet traffic
in the DoD. As the SEI became more active with trending, profiling, and capacity planning, it de-
veloped IETF standards for this data [IPFIX 2011].

SEI advances have moved beyond netflow analytics. SEI engineers created Yet Another Flowme-
ter (YAF) [Inacio 2010], which leverages additional data sources, including application-level in-
formation—Domain Name System, Secure Socket Layer certificates, and application banners
stored in the IPFIX standard format. Further, the SEI supports key sponsors in higher level areas,
such as systems engineering, architecture, and overall Computer Network Defense program man-
agement.

36 Argus development continues outside the SEI, at QoSient.

37 Intrusion Detection Message Exchange Format (IDMEF) and Incident Object Description and Ex-
change Format (IODEF). Cover Pages [CP 2001] has further details and useful links.

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-CERT-CC140109.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 182
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 The Consequence: Improved Situational Awareness with SEI Tools

SEI network situational awareness tools are actively used in operations on very large networks. The
tools help DoD and federal agencies characterize network threats, assess the impact of security
events, and identify vulnerable network infrastructure. Because the tools provide ongoing infor-
mation about the normal traffic on the network, they support network analysts in assessing the effec-
tiveness of their defensive actions and help with traffic engineering and capacity planning. The SEI
flow detection methodologies are a practical means of providing context for particularly severe or
long-lasting incidents, such as those found at NASDAQ [Schwartz 2011], and the means of enabling
analysts to get a broad profile of network behavior before they perform detailed analysis.

The Centaur program is the largest system in the DoD
for global situational awareness of the NIPRNet availa-
ble to Tier 1 Computer Network Defense analysts. It
gives DoD network and intelligence analysts a compre-
hensive means to uncover and measure both strategic
and tactical network-security threat activity. Success in
the DoD led to voluntary deployments in the federal ci-
vilian agencies by the Department of Homeland Secu-
rity’s US-CERT through the Special Access Programs
initiative and, later, Einstein. The SEI analysis approach
and tool suite are also used by the National Security
Agency’s National Threat Operations Center, Service
computer security incident response teams (CSIRTs),
Defense Information Systems Agency Regional
CSIRTs, and the Defense Advanced Research Projects
Agency, among others.

Open source release of YAF, SiLK, and associated tools
has led to widespread adoption. Several commercial en-
tities have incorporated the technology into their own
products, for example, nPulse and 21st Century Tech-
nology’s Lynxeon. Far more companies use SEI tech-
nology to help protect their own networks and the net-
works of their clients. Users include telecommunication providers, government defense
contractors, and many other high-tech companies. The Multi-State Information Sharing and Anal-
ysis Center (MS-ISAC) uses SEI technology in its network monitoring. The DoD and DHS have
used SEI tools and approaches to help security analysts profile and monitor U.S. government net-
works and systems for unauthorized access.

 The SEI Contribution

Both netflow and intrusion detection technologies were in use before the SEI became involved.
The SEI tools improved these technologies to operate at a large scale and with enhanced usability.
The SEI took large-scale flow collection from initial creation to being the leading reference im-
plementation supporting open standards for describing network traffic. Adoption of SEI tools and
techniques can be found in the DoD, government (federal, state, local), in thriving commercial
network monitoring services, and in security appliances.

The View from Others

MS-ISAC has been utilizing the
SILK tools provided by the NETSA
group of CERT/CC in order to
monitor state and local govern-
ment networks in the United States
for almost a year now. We are
amazed by the efficiency and
scalability of the tools, and very
grateful to the CERT/CC staff for
providing an incredible support to
keep our infrastructure running.
SILK tools have enabled us to
identify hundreds of security inci-
dents affecting state/local govern-
ments which would otherwise go
undetected. Thank you very much.

– Multi-State Information
Sharing and Analysis Center
Manager

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 183
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

In 2007, the Comprehensive National Cyber Initiative made the Einstein program mandatory for
all federal civilian agencies.38 US-CERT at DHS uses Einstein to meet the mandatory and admin-
istrative requirements for DHS to help protect federal computer networks and the delivery of es-
sential government services. Einstein’s impact was also mentioned in a Federal Computer Week
article [Miller 2007], which describes an attack launched on Department of Transportation com-
puters from Department of Agriculture computers that were infected with a computer worm. The
unusual network traffic was discovered at the Department of Transportation network gateway be-
cause of Einstein.

Finally, the SEI has built a strong community of network analysts through its annual FloCon
workshop, which brings together analysts from academia, the government, and private industry.
Attendance has grown steadily since the first workshop in 2003; FloCon 2014 had 188 partici-
pants.

 References

[CP 2001] Cover Pages Technology Reports. “Intrusion Detection Message Exchange Format.”
January 15, 2001. http://xml.coverpages.org/idmef.html

[IPFIX 2011] IETF Network Working Group. “Specification of the IP Flow Information eXport
(IPFIX) Protocol.” November 29, 2011. http://tools.ietf.org/html/draft-ietf-ipfix-protocol-
rfc5101bis-00. The latest information on the protocol can be found at http://tools.ietf.org/wg/ipfix/
(2011).

[Inacio 2010] Inacio, Chris & Trammell, Brian. “YAF: Yet Another Flowmeter,” 107-118. Pro-
ceedings of Large Installation System Administration Workshop (LISA). San Jose, CA, November
2010. USENIX, 2010. https://www.usenix.org/legacy/events/lisa10/tech/slides/inacio.pdf

[Miller 2007] Miller, Jason. “Einstein Keeps an Eye on Agency Networks.” Federal Computer
Week. May 21, 2007. http://fcw.com/Articles/2007/05/21/Einstein-keeps-an-eye-on-agency-net-
works.aspx

[Schwartz 2011] Schwartz, Matthew J. “Nasdaq Confirms Servers Breached.” Information Week.
http://www.informationweek.com/news/security/attacks/229201276 (2011).

38 Einstein's mandate originated in the Homeland Security Act and the Federal Information Security

Management Act, both in 2002, and the presidential directive named Homeland Security Presiden-
tial Directive (HSPD), which was issued on December 17, 2003.

https://www.usenix.org/legacy/events/lisa10/tech/slides/inacio.pdf
http://en.wikipedia.org/wiki/Homeland_Security_Act
http://en.wikipedia.org/wiki/Federal_Information_Security_Management_Act_of_2002
http://en.wikipedia.org/wiki/Federal_Information_Security_Management_Act_of_2002
http://en.wikipedia.org/wiki/Presidential_directive
http://xml.coverpages.org/idmef.html
http://tools.ietf.org/html/draft-ietf-ipfix-protocol-rfc5101bis-00
http://tools.ietf.org/html/draft-ietf-ipfix-protocol-rfc5101bis-00
http://tools.ietf.org/wg/ipfix/
http://fcw.com/Articles/2007/05/21/Einstein-keeps-an-eye-on-agency-net-works.aspx
http://fcw.com/Articles/2007/05/21/Einstein-keeps-an-eye-on-agency-net-works.aspx
http://www.informationweek.com/news/security/attacks/229201276

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 184
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Insider Threat

 The Challenge: Cyber Attacks by Insiders

Insiders pose a challenging cybersecurity threat. They
are trusted employees, former employees, or even con-
tractors with access to internal systems and sensitive in-
formation; because they have (or recently had) author-
ized, trusted access, it is hard to protect against their
malicious actions [Trembly 2011]. These actions include
IT sabotage, fraud, theft of confidential or proprietary
information, espionage, and threats to U.S. critical infra-
structure [Gupta 2008]. The actions of a single insider
have resulted in a range of impacts, including loss of
staff hours, loss of reputation and customer trust, and fi-
nancial damage so extensive that businesses have been
forced to lay off employees or cease operation. Damage
from insider incidents can have far-reaching repercus-
sions, creating serious risks to public safety and national
security, such as disruption of a service in a critical in-
frastructure, disclosure of classified information, or in-
dustrial espionage. Addressing insider threat is a chal-
lenge, as technological solutions alone are ineffective.

 A Solution: Insider Threat Research and Solutions

The SEI has become a center of expertise on identifying and mitigating insider threat [Kaplan
2011]. The SEI first investigated the malicious actions of insiders in 2000, when the DoD spon-
sored research to identify characteristics of the environment surrounding insider incidents in the
military services and defense agencies. The findings guided ongoing efforts to reduce the threat to
critical information systems in the DoD and its contractor community. This work was the begin-
ning of an ongoing partnership between the SEI and the DoD’s Defense Personnel Security Re-
search Center (PERSEREC). The following year, the U.S. Secret Service National Threat Assess-
ment Center (NTAC) and the SEI worked together to conduct a unique study of insider
incidents—psychologists from NTAC and technical experts from the SEI examined insider cases
both from a behavioral and a technical perspective. It was the first study that used this dual ap-
proach. In 2002, SEI security experts assisted the U.S. Secret Service (USSS) with the cyber as-
pect of its protection mission at the Salt Lake City Olympic Games, categorized as a National Se-
curity Special Event. In talking with the Olympic Committee and considering potential problems,
SEI staff realized the criticality and extent of insider threat. Work with the Secret Service contin-
ued, and research was stepped up. In 2013, the Secret Service honored SEI insider threat experts
for their “efforts and superior contributions” to USSS law enforcement responsibilities.39

In 2003 and 2004, the Department of Homeland Security (DHS) added its sponsorship to the in-
sider threat study and to building a database of the valuable information collected during the

39 See http://www.sei.cmu.edu/newsitems/USSS-award.cfm

The View from Others

They have a great insider threat
research team up there; they’ve
been working on this for over 10
years.

– Dr. Ron Ross, National
Institute of Standards and
Technology [SEI 2011]

CERT is offering a fantastic In-
sider Threat Workshop that will be
of extreme benefit to anybody in
the computer security industry.

– Lauren Gerber, in
PC1news.com
[Gerber 2009]

http://www.sei.cmu.edu/newsitems/USSS-award.cfm

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 185
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

study. In 2011, the DoD began funding development of a version of the database for use by gov-
ernment researchers and law enforcement.40 The studies [CSO 2004]41 and database development
work led to the development of best practices [Cappelli 2012]42 and models [Moore 2008],43 both
funded by CyLab at Carnegie Mellon University. The models, which include behavioral traits and
technical actions, reveal indicators that might alert an or-
ganization to the potential for malicious acts by insiders
[Greene 2010]. Model development is ongoing, with
models now available for insider IT sabotage, insider
theft of intellectual property, and national security espio-
nage. In 2011-12, development began on a fraud model
with the USSS, Department of Treasury, and the finan-
cial sector (sponsored by DHS). In 2012, the SEI ex-
panded its research and case collection process to in-
clude insider incidents that occur outside the United
States as well as those perpetrated by insiders but with-
out malicious intent. This expansion has allowed inter-
national [Flynn 2013] and unintentional insider threat
studies [CERT IT Team 2013], providing a more com-
plete picture of the threat posed by insiders to organiza-
tion’s critical assets.

The SEI conducts workshops on how to apply the prac-
tices and models. To extend its impact, the SEI pub-
lished The CERT Guide to Insider Threats: How to Pre-
vent, Detect, and Respond to Information Technology
Crimes, which combines 10 years of research into one
practical guide [Cappelli 2012]. SEI insider threat ex-
perts also worked with the Carnegie Mellon Entertain-
ment Technology Center to create a prototype interac-
tive virtual simulation tool—essentially a video game—
teaching insider threat mitigation.

In response to community need, the insider threat team
redirected its research toward solution-oriented activi-
ties. With seed funding from Carnegie Mellon’s CyLab, the team developed insider threat assess-
ments (ITAs), which are based on more than 4,000 indicators (organized into more than 130 cate-
gories) identified in the Insider Threat Database. DHS funded development of the ITA, Version 2,

40 In this version of the database, identities were made anonymous.

41 The first study [CSO 2004], and subsequent studies and analyses are available on the CERT web-
site (http://www.cert.org/insider_threat).

42 Practices can be found in a set of reports available at http://www.cert.org/insider-threat/publica-
tions/index.cfm. One of the best known is the “Common Sense Guide,” now in its fourth edition
[Silowash 2012].

43 The report describes the first model developed [Moore 2008]. This model and others can be found
at http://www.cert.org/insider-threat/research/Modeling-and-Simulation.cfm.

The View from Others

New research from Carnegie
Mellon University’s Software En-
gineering Institute provides further
evidence why information security
isn’t just the problem of an enter-
prise’s IT and IT security organi-
zation but of its top non-IT leader-
ship as well.

– Eric Chabrow, in The Public
Eye, a government security
blog [Chabrow 2011]

The Insider Threat Study is an ex-
cellent example of collaboration
between the federal government
and private sector to safeguard the
financial payment systems of the
United States.

– Ryan Moore, Assistant to
the Special Agent in
Charge, USSS, in a press
release on an award to SEI
Insider Threat staff
members
[SEI 2013]

http://www.cert.org/insider-threat/research/Modeling-and-Simulation.cfm
http://www.cert.org/insider_threat
http://www.cert.org/insider-threat/publica-tions/index.cfm
http://www.cert.org/insider-threat/publica-tions/index.cfm

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 186
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

which SEI insider threat experts use to collect data that organizations can use as a benchmark. As
a supplement to the face-to-face workshops already in place, insider threat experts developed ex-
ercises for STEPfwd, an SEI web-based platform that enables participants in multiple locations to
work together on simulations of the latest threats. Both government and private industry have
taken advantage of the ITAs and the online exercises.

In 2009, the SEI set up the CERT Insider Threat Lab, where its technologists could test existing
technical solutions for the insider threat problem and identify new or refined solutions in gap ar-
eas. For example, research is underway on methods that help cloud service providers deal with in-
sider threats [Porter 2013]. The lab is developing new technical controls for government and in-
dustry and making the controls available online.44

 The Consequence: Improved Insider Threat Detection and Response

Using SEI results, information assurance staff and counterintelligence analysts have implemented
technical controls for catching insiders. The DoD and federal civilian agencies can now identify
insider threat proactively using SEI techniques and tools instead turning to forensics after the
crime. In case of an attack, organizations are armed with policies, practices, and technical
measures to help with recovering from the attack, identifying the perpetrator, and implementing
new measures for improved incident management in the future.

 The SEI Contribution

Law enforcement had long been profiling miscreants in general but did not focus on insider threat
to computer systems and the information that resides on them. Similarly, network security experts
focused on protecting against the technical attacks from outside the perimeter rather than attacks
from inside. The SEI contribution was to examine cyber attacks by insiders from both technical
and behavioral perspectives and to use real-life cases in this research. The ultimate goal of SEI in-
sider threat research is to help all organizations, including the DoD, federal agencies, and critical
sector industries, prevent insider attacks and, if there is such an attack, to provide these organiza-
tions with the tools, techniques, and methods that enable them to detect and respond to the illicit
activity early, thus minimizing the impact to critical assets. This goal is well on its way to realiza-
tion.

 References

[Cappelli 2012] Cappelli, Dawn; Moore, Andrew P.; & Trzeciak, Randy. The CERT Guide to In-
sider Threat: How to Prevent, Detect, and Respond to Information Technology Crime. Addison
Wesley Professional, February 2012 (ISBN 0321812573).

[CERT IT Team 2013] Unintentional Insider Threats: A Foundational Study (CMU/SEI-2013-
TN-022). Software Engineering Institute, Carnegie Mellon University, 2013. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=58744

[Chabrow 2011] Chabrow, Eric. “Obama Reiterates Cybersec as a Priority.” The Public Eye. De-
cember 1, 2011. http://www.inforisktoday.com/blogs/public-eye-b-13/p-21

44 See http://www.cert.org/insider-threat/research/controls-and-indicators.cfm

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=58744
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=58744
http://www.inforisktoday.com/blogs/public-eye-b-13/p-21
http://www.inforisktoday.com/blogs/public-eye-b-13/p-21

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 187
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[CSO 2004] CSO Magazine, in cooperation with the U.S. Secret Service and CERT Coordination
Center. 2004 E-Crime Watch Survey: Summary of Findings, 2004. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?assetID=53389

[Flynn 2013] Flynn, Lori; Huth, Carly; Trzeciak, Randall; & Buttles-Valdez, Palma. Best Prac-
tices Against Insider Threats in All Nations (CMU/SEI-2013-TN-023). Software Engineering In-
stitute, Carnegie Mellon University, 2013. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=59082

[Gerber 2009] Gerber, Lauren.” Insider Threat Workshop To Be Held By Cert This May!”
PC1news.com. March 24, 2009. http://www.pc1news.com/news/556/cert-comes-to-the-res-
cue.html

[Greene 2010] Greene, Tim. “Fight Insider Threat with Tools You Already Have,” Network
World (September 27, 2010). http://www.networkworld.com/Home/tgreene.html

[Gupta 2008] Gupta, Upasana. “Tackling the Insider Threat,” Bank Info Security. November 6,
2008. http://www.bankinfosecurity.com/articles.php?art_id=1042

[Kaplan 2011] Dan Kaplan. “Internal Review,” SC Magazine 22, 2 (February 2011): 22-26.
http://media.scmagazine.com/documents/91/scc_0211v2_22553.pdf

[Moore 2008] Moore, Andrew; Cappelli, Dawn; & Trzeciak, Randall. The “Big Picture” of In-
sider IT Sabotage Across U.S. Critical Infrastructures (CMU/SEI-2008-TR-009). Software Engi-
neering Institute, Carnegie Mellon University, 2008. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=8703

[Porter 2013] Porter, Greg. Cloud Service Provider Methods for Managing Insider Threats: Anal-
ysis Phase I (CMU/SEI-2013-TN-020). Software Engineering Institute, Carnegie Mellon Univer-
sity, 2013. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=69709

[SEI 2011] Software Engineering Institute, Carnegie Mellon University. Weekly Headlines. 2011.
https://mahara.org/artefact/file/download.php?file=177333&view=51792

[SEI 2013] Software Engineering Institute, Carnegie Mellon University. United States Secret Ser-
vice Honors CERT Insider Threat Team Members. 2013. http://www.sei.cmu.edu/news/arti-
cle.cfm?assetid=53981&article=114&year=2013

[Silowash 2012] Silowash, George; Cappelli, Dawn; Moore, Andrew; Trzeciak, Randall;
Shimeall, Timothy; & Flynn, Lori. Common Sense Guide to Mitigating Insider Threats, Fourth
Edition (CMU/SEI-2012-TR-012). Software Engineering Institute, Carnegie Mellon University,
2012. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=34017

[Trembly 2011] Trembly, Ara C. “We Have Seen the Enemy, and He Works for Us.” Information
Management Online. February 16, 2011. http://www.information-manage-
ment.com/news/data_security_information_management_GRC-10019745-1.html (2011).

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=59082
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=59082
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=69709
https://mahara.org/artefact/file/download.php?file=177333&view=51792
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?assetID=53389
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?assetID=53389
http://www.pc1news.com/news/556/cert-comes-to-the-res-cue.html
http://www.pc1news.com/news/556/cert-comes-to-the-res-cue.html
http://www.networkworld.com/Home/tgreene.html
http://www.bankinfosecurity.com/articles.php?art_id=1042
http://media.scmagazine.com/documents/91/scc_0211v2_22553.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8703
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8703
http://www.sei.cmu.edu/news/arti-cle.cfm?assetid=53981&article=114&year=2013
http://www.sei.cmu.edu/news/arti-cle.cfm?assetid=53981&article=114&year=2013
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=34017
http://www.information-manage-ment.com/news/data_security_information_management_GRC-10019745-1.html
http://www.information-manage-ment.com/news/data_security_information_management_GRC-10019745-1.html

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 188
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Information Security Assessments

 The Challenge: Managing Risks to Enterprise-Wide Information Security

Before the era of pervasive computing, the major enterprise assets were tangible, such as build-
ings, equipment, and physical products. Now intangibles are often the most critical assets [Web-
ber 2000]—intangibles such as intellectual property, patient records, customer data, and other per-
sonally identifiable information. When a security breach compromises critical assets, an
organization can suffer not only monetary loss but also loss of proprietary information, reputation,
and the public’s trust. Many government and commercial organizations have not identified or
placed a value on their intangible assets or assessed the risk to those assets, so they cannot know if
their important information is adequately protected or if resources are used to protect relatively
unimportant information. The lack of effective risk identification and management has an impact
on both the organization and on U.S. economic security.

 A Solution: Managing Risks to Enterprise-Wide Information Security

The SEI began helping organizations identify software development risks in the early 1990s
through its Software Risk Evaluation (SRE). Prompted by the desire to help organizations better
identify cybersecurity risks, the SEI subsequently developed the Information Security Evaluation
(ISE). Drawing from SRE experiences, developers combined interviews with management and
staff (separately) with a technology evaluation to help organizations identify their assets and de-
termine their information security risks. The ISE team provided practical guidance along with its
findings.

The SEI subsequently documented best practices in CERT security improvement modules—mod-
ular documents that contain concrete guidance for analyzing and improving specific aspects of se-
curity on networked systems. The modules were developed from 1996 to 2001 and were subse-
quently published in a book [Allen 2001].45 In parallel, starting in 1997, the SEI created a new
approach for managing cybersecurity risk—the Operationally Critical Threat, Asset, and Vulnera-
bility Evaluation (OCTAVE). Development was prompted by a combination of SEI experience
with the ISE and the Defense Health Information Assurance Program (DHIAP).46 The SEI goal
was a self-directed risk assessment as part of the DoD effort to comply with the data security re-
quirements defined by the Health Insurance Portability and Accountability Act (HIPAA) of 1996.
The OCTAVE method incorporated the principles of ISE and continuous risk management. The
method was defined in a 1999 OCTAVE framework, the blueprint for the full method, released in
2001. First piloted with an SEI evaluation team, the OCTAVE method [Alberts 2003] became a
self-directed risk evaluation that meets the unique needs of each organization. It balances the or-
ganization’s critical information assets, business needs, threats, and vulnerabilities, and also
benchmarks the organization against known good practice.

45 The CERT Guide to System and Network Security Practices has been translated into four lan-

guages.

46 DHIAP was a small consortium that included the SEI and the Advanced Technology Institute (ATI)
of the South Carolina Research Authority (SCRA) and was overseen by a group from the Telemedi-
cine Advanced Technology Research Center (TATRC) from Fort Detrick, Maryland.

https://collaboration.sei.cmu.edu/sites/Management/ManagementChapter/3-AppraisalMethods140103.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 189
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

People who work in small organizations liked the OCTAVE approach but needed a streamlined
method to accommodate their staff size, schedules, and budgets. In response, the SEI developed
OCTAVE-S [Alberts 2005].47 While remaining consistent with OCTAVE principles, OCTAVE-S
provides organizations of fewer than 100 people with an efficient, inexpensive approach to identi-
fying and managing information security risks. Both OCTAVE and OCTAVE-S are supported
with guidance, worksheets, and questionnaires. The SEI developed another alternative, OCTAVE
Allegro [Caralli 2007], in response to OCTAVE users
who were looking for a more information-centric
method that could be institutionalized at the operational
unit level. Allegro helps businesses identify their infor-
mation assets and determine how those assets are at risk
by putting them in the context of “containers”—places
where information is stored, transmitted, or processed.
While Allegro can be used in a collaborative workshop
style like the original OCTAVE methods, it is also well
suited for individuals who want to perform a risk assess-
ment without extensive organizational involvement or
expertise. Allegro developers reduced the amount of risk
analysis and IT knowledge needed, and simplified in-
structions and worksheets.

 The Consequence: Enterprise Risk
Management and Security Improvement

Organizations using the OCTAVE product suite have
control over their information security activities [Shan-
tamurthy 2011]. Managers can develop a protection
strategy that is appropriate for their particular organiza-
tions’ mission and priorities, a strategy that addresses
policy, management, administrative, and technological
aspects, among others. As a result of SEI evaluations,
government and commercial organizations have a
clearer view of their information security risk and control over their security posture. They man-
age their risk through improvement efforts and periodic assessments, which they schedule and
perform at their own discretion. Many organizations establish a multidisciplinary team that can
perform the follow-up assessments and act as a focal point for the improvement efforts. Important
organizational and individuals’ information are protected. As a result, the organizations improve
not only their own risk profile but also that of the sectors to which they belong—thus contributing
to national security.

One example of information protection and security improvement is the use of the OCTAVE
method and OCTAVE Allegro by various agencies of the county government of Clark County,
Nevada. Clark County adopted the OCTAVE method as a way to comply with the federal HIPAA

47 The development of OCTAVE-S was sponsored by the SEI Technology Insertion, Demonstration,

and Evaluation (TIDE) program, created to help small manufacturing enterprises adopt state-of-the-
practice technologies.

The View from Others

Conducting a security risk analysis
has long been a requirement of the
HIPAA Security Rule and is also
necessary to achieve Meaningful
Use regarding the use of elec-
tronic health records (“EHR") sys-
tems. OCTAVE Allegro provides
us with a useful framework for as-
sessing risks to ePHI, including
EHR’s, while at the same time
providing the evidentiary require-
ments necessary for regulatory
compliance. Our clients need
something that is easy to deploy,
repeatable, underpinned by good
practice and OCTAVE provides
this.

– Greg Porter, Founder,
Principal Consultant,
Allegheny Digital

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 190
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

requirements to protect the privacy of personal information collected through the county’s social
services. It later moved to OCTAVE Allegro, which SEI staff members developed in response to
the county’s need. Clark County went on to take SEI train-the-trainer classes and is implementing
OCTAVE Allegro organization-wide at the operational unit level.

The U.S. Army and Air Force are using the OCTAVE method [Coleman 2003]. OCTAVE is used
by the DHIAP, other federal programs, and the commercial sector. The Telemedicine and Ad-
vanced Technology Research Center (TATRC) taught the OCTAVE method for use at DoD medi-
cal treatment facilities around the globe.

 The SEI Contribution

Various information technology assessments were used before the SEI developed enterprise-wide
evaluations that stress information security as it relates to each organization’s mission, critical as-
sets, and priorities. Although other methods are available today [Violino 2010], OCTAVE’s focus
on continuous risk management has been described by IEEE as a de facto standard. The
OCTAVE method is used for HIPAA compliance in both the public and private sectors.

The SEI has made a major contribution to the DoD with the development of the OCTAVE
method, particularly in the medical area. The Surgeon General for the Army and Air Force recog-
nized the OCTAVE method as the recommended best practice for HIPPA risk assessments.

 References

[Alberts 2003] Alberts, Christopher & Dorofee, Audrey. Managing Information Security Risks:
The OCTAVE Approach. Addison-Wesley Professional, 2003 (ISBN 0321118863).

[Alberts 2005] Alberts, Christopher; Dorofee, Audrey; Stevens, James; & Woody, Carol.
OCTAVE-S Implementation Guide, Version 1 (CMU/SEI-2004-HB-003). Software Engineering
Institute, Carnegie Mellon University, 2005. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=6795

[Allen 2001] Allen, Julia H. The CERT Guide to System and Network Security Practices. Addi-
son-Wesley Professional, 2001 (ISBN 020173723X).

[Caralli 2007] Caralli, Richard; Stevens, James; Young, Lisa; & Wilson, William. Introducing
OCTAVE Allegro: Improving the Information Security Risk Assessment Process (CMU/SEI-2007-
TR-012). Software Engineering Institute, Carnegie Mellon University, 2007. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=8419

[Coleman 2003] Coleman, Jonathan. “Execution of a Self-Directed Risk Assessment Methodol-
ogy to Address HIPPA Data Security Requirements.” Society of Photo-Optical Instrumentation
Engineers (SPIE), 2003. http://spie.org/Publications/Proceedings/Paper/10.1117/12.480653

[Shantamurthy 2011] Shantamurthy, Dharshan. “OCTAVE Risk Assessment Examined Up
Close.” TechTarget. http://searchsecurity.techtarget.in/tip/OCTAVE-risk-assessment-method-
examined-up-close (2011).

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6795
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6795
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=8419
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=8419
http://spie.org/Publications/Proceedings/Paper/10.1117/12.480653
http://searchsecurity.techtarget.in/tip/OCTAVE-risk-assessment-method-examined-up-close
http://searchsecurity.techtarget.in/tip/OCTAVE-risk-assessment-method-examined-up-close

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 191
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Violino 2010] Violino, Bob. “IT Risk Assessment Frameworks: Real-World Experience.” Net-
workWorld. May 3, 2010. http://www.networkworld.com/news/2010/050310-it-risk-assessment-
frameworks-real-world.html

[Webber 2000] Webber, Alan M. “New Math for a New Economy.” Fast Company 31 (January-
February): 214. http://www.fastcompany.com/magazine/31/lev.html

http://www.networkworld.com/news/2010/050310-it-risk-assessment-frameworks-real-world.html
http://www.networkworld.com/news/2010/050310-it-risk-assessment-frameworks-real-world.html

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 192
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Cybersecurity Engineering

 The Challenge: Software Security Assurance

Software assurance is the confidence that software is free from vulnerabilities—either intention-
ally designed into the software or accidentally inserted at any time during its lifecycle—and that
the software functions in the intended manner [CNSS 2010]. Developing and acquiring software
with some level of assurance that it will perform as intended requires addressing a broad range of
essential activities, such as requirements analysis, system architecture and design, program devel-
opment and integration, testing, maintenance, and project management. Thus, software assurance
requires building security into the system early in the lifecycle, with continued emphasis through-
out the lifecycle. As DoD and all federal agencies rely on software-based systems, software vul-
nerabilities become an Achilles heel that can allow potential access for malicious or inadvertent
reconnaissance, exploitation, subversion, sabotage, disclosure and denial of system services. It is
essential to understand how to build, acquire, and operate dependable, trusted, survivable systems
that provide a measured level of software assurance.

 A Solution: Build In Security from the Start

In 1998, the SEI began looking into engineering solutions that result in more secure as-shipped
products. SEI researchers focused on the earlier phases of the software development lifecycle,
identified gap areas, and did exploratory work to find solutions. In addition to drawing on their
own knowledge, SEI security experts assembled input from SEI customers and from participants
in Information Survivability Workshops (ISWs), held annually from 1997 to 2001.48 These ISWs
identified a range of gap areas that motivated early research.

Early work was concentrated on analytical methods and supporting tools. This research included
development of a simulation language, Easel [Stojkovic 2005]. Easel was designed to model net-
work attacks and assess the effectiveness of mitigation techniques. It served as a demonstration of
the technology, and the research resulted in a better understanding of the potential impacts of
emergent algorithms on system security. Function Extraction [Pleszkoch 2004] addressed the
need for a practical means of determining what sizable programs do in all circumstances of use; it
focused on automatically extracting as-built functionality from the executable language. Its initial
application was to extract the functionality of malicious code for analysts seeking to create effec-
tive countermeasures. The Function Extraction library of software tools was approved for public
release in 2012. The Survivable Network Analysis (SNA) method [Mead 2000] was developed as
a process for systematically assessing the survivability properties of both proposed and existing
systems; the analysis could be done at the lifecycle, requirements, or architecture level. (SNA was
later renamed Survivable Systems Analysis [SSA] to reflect the emphasis on analyzing systems
rather than networks.) SNA was the precursor of Software Quality Requirements Engineering
(SQUARE) [Mead 2005], a nine-step process for building security in at the requirements phase.

48 Co-sponsored by the SEI and IEEE, each ISW brought together researchers and practitioners to

discuss survivability, related problems, and promising approaches to solutions. Survivability is the
ability of a system to limit damage and continue critical functions even when attacked. The dedi-
cated ISWs were discontinued when other conferences began to including include survivability
tracks.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 193
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Since its initial development in 2005, SQUARE has been adapted to acquisition and extended to
include privacy; tools have been developed to support its use.

In addition to developing analysis methods and tools, SEI researchers explored ways to identify
organizational and systemic risks that could affect software security. The Mission Assurance
Analysis Protocol [Alberts 2005] was initiated to identify
and understand inherent operational risks when manage-
ment control of work processes is distributed among
multiple organizations. The Vendor Risk Assessment
and Threat Evaluation [Lipson 2001] was developed to
assess vendor capabilities as an indicator of product
quality. In late 2006, the SEI began research on supply
chain integrity [Ellison 2010a]; SEI experts defined risk
management approaches (see paper by Croll [Croll
2013]) that can be used during acquisition, development,
and transit, as well as when components are integrated
with other software and when changes occur in the envi-
ronment and in attack techniques after deployment. To
address complexity, the SEI developed two frameworks,
starting in 2008—the Survivability Analysis Framework
[Ellison 2010b], a structured view of people, activities,
and technology that helps organizations characterize the
complexity of dynamic multi-system and multi-organiza-
tional business processes and the Software Assurance
Modeling Framework [Siviy 2009], which enables or-
ganizations to tie their current environment to opera-
tional needs and identify areas where they can improve
assurance. In 2010, the SEI began work on a risk-based
approach for measuring and monitoring the security
characteristics of interactively complex, software-reliant
systems across the lifecycle and supply chain. The Inte-
grated Measurement Analysis Framework [Alberts 2010]
integrates performance data for individual components to
provide a consolidated view of system performance. The
Mission Risk Diagnostic [Alberts 2012] analyzes the risk
to the system as a whole for a comprehensive view of the overall risk to a system’s mission.

In 2013, with DHS sponsorship, the SEI created a cybersecurity risk management strategy to aid
alert originators planning to use the new wireless emergency alerting (WEA) capability imple-
mented by the Federal Emergency Management Agency (FEMA) in April 2013 [Woody 2013].
They can use the strategy throughout WEA adoption, operations, and sustainment to decrease vul-
nerability to attack and manage risk in the face of changing threats. As part of this effort, the SEI
is also working with the developers of alert originator software to increase WEA cybersecurity.

Recognizing that the principle of building security in at the start had to extend to the workforce,
DHS sponsored the SEI to build a model curriculum for software assurance education. The SEI

The View from Others

Our company provided them with
an opportunity to assess a many-
faceted product and they re-
sponded graciously by sharing the
different techniques they used to
analyze the security aspects of our
application. Their results gave us
insight that has since influenced
our application development and
configuration.

– SQUARE client, a software
development company

We identify 23 activities that are
essential to engineer complete and
detailed security requirements. We
use these 23 activities as a basis to
compare five different require-
ments engineering processes. Our
analysis shows that SQUARE in-
corporates more of these activities
than other processes.

– Muhammad Umair Ahmed
Khan and Mohammed
Zulkernine
[Khan 2009]

https://collaboration.sei.cmu.edu/sites/Education_Training/EducationChapter/4-Sw%20Assur%20Curric%20131011.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 194
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

also developed course descriptions and other resources. In 2011, the master’s curriculum was rec-
ognized by the IEEE and the Association for Computing Machinery as the model curriculum for a
master’s degree program in software assurance.

 The Consequence: Improved Software Development and Acquisition
Practices

SEI tools, techniques, methods, and analysis are raising the level of awareness of software devel-
opers, acquirers, and system managers [Allen 2008]. Security and privacy can now be clearly de-
fined in software requirements, helping to ensure these qualities are incorporated from the start.
The use of SEI frameworks helps organizations to increase their confidence that operational mis-
sion and critical work processes can be successfully executed in the presence of stress and possi-
ble failure, and helps them to identify areas where they can apply policy, practices, and technol-
ogy options to improve assurance. The risks inherent in supply chains can be assessed, reduced,
and mitigated. Risk-based measurement techniques increase organizations’ understanding of their
software assurance situation and enable them to make effective improvements. The cybersecurity
risk management strategy enables emergency alert originators to mitigate risks so that alerts are
sent with proper authorization, accurately, and on time, every time.

The ultimate consequence is improved national security, with increased assurance that software
will operate as expected for essential government services and the nation’s critical infrastructure
and with reduced risk and impact of successful cyber attacks.

 The SEI Contribution

In seeking ways to prevent vulnerabilities rather than simply react to them, the SEI leveraged the
software community’s identification of gap areas in software assurance research and the
knowledge gained in its CERT Coordination Center’s reactive work on security breaches and soft-
ware vulnerabilities. Some projects are unique approaches to software assurance; others adapt
technology and techniques from other software-related areas. Along with the SEI research in this
area, the software industry has recognized that security must be incorporated into product and sys-
tems development: for example, Microsoft’s Security Development Lifecycle and Cigital’s Build
Security in Maturity Model. Likewise, the national Institute of Standards and Technology (NIST)
and the Object Management Group (OMG) are developing standards and guidelines for address-
ing security in software development.

The SEI works with DHS, DoD agencies and organizations, and defense contractors to raise
awareness of software assurance opportunities and requirements and to help them take action to
build security into products early in the software development lifecycle. The SEI addresses the na-
tion’s need for increased software assurance expertise by offering training in SEI techniques and a
curriculum49 to prepare future software assurance experts. The institute reaches out to the commu-
nity of software developers and acquirers by managing and contributing content to DHS web-
sites—Build Security In (BSI) and the Software Assurance (SwA) Community Resources and In-
formation Clearinghouse (CRIC). SEI experts also work with the software assurance community
through DHS Software Assurance Working Groups.

49 See http://www.cert.org/mswa

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-CERT-CC140109.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/3-VulAnalysis140109.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/3-VulAnalysis140109.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 195
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 References

[Alberts 2005] Alberts, Christopher & Dorofee, Audrey. Mission Assurance Analysis Protocol
(MAAP): Assessing Risk in Complex Environments (CMU/SEI-2005-TN-032). Software Engi-
neering Institute, Carnegie Mellon University, 2005. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=7505

[Alberts 2010] Alberts, Christopher; Allen, Julia; & Stoddard, Robert. Integrated Measurement
and Analysis Framework for Software Security (CMU/SEI-2010-TN-025). Software Engineering
Institute, Carnegie Mellon University, 2010. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=9369

[Alberts 2012] Alberts, Christopher & Dorofee, Audrey. Mission Risk Diagnostic (MRD) Method
Description (CMU/SEI-2012-TN-005). Software Engineering Institute, Carnegie Mellon Univer-
sity, 2012. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10075

[Allen 2008] Allen, J.; Barnum, S.; Ellison, R.; McGraw, G.; & Mead, N. Software Security Engi-
neering: A Guide for Project Managers. Addison-Wesley, 2008 (ISBN-13:978-0-321-50917-8).

[CNSS 2010] Committee on National Security Systems. National Information Assurance Glos-
sary. CNSS Instruction No. 4009, April 26, 2010. http://www.ncix.gov/publications/pol-
icy/docs/CNSSI_4009.pdf

[Croll 2013] Croll, Paul. “Managing Supply Chain Risk – Understanding Vulnerabilities in the
Code You Buy, Build, or Integrate.” IEEE Software Technology Conference (STC 2013). Salt
Lake City, Utah, April 8-11, 2013. IEEE, 2013.

[Ellison 2010a] Ellison, Robert & Woody, Carol. “Considering Software Supply-Chain Risks.”
CrossTalk 23, 5 (September/October 2010): 9-12.

[Ellison 2010b] Ellison, Robert & Woody, Carol. Survivability Analysis Framework (CMU/SEI-
2010-TN-013). Software Engineering Institute, Carnegie Mellon University, 2010. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=9323

[Khan 2009] Kahn, M. U. A. & Zulkernine, M. “On Selecting Appropriate Development Pro-
cesses and Requirements Engineering Methods for Secure Software” 353-358. 33rd Annual IEEE
International Computer Software and Applications Conference, 2009 (COMPSAC ’09) (Volume:
2). Seattle, WA, July 2009. IEEE, 2009.

[Lipson 2001] Lipson, Howard; Mead, Nancy; & Moore, Andrew. Can We Ever Build Survivable
Systems from COTS Components? (CMU/SEI-2001-TN-030). Software Engineering Institute,
Carnegie Mellon University, 2001. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=5581

[Mead 2000] Mead, Nancy; Ellison, Robert; Linger, Richard; Longstaff, Thomas; & McHugh,
John. Survivable Network Analysis Method (CMU/SEI-2000-TR-013). Software Engineering In-
stitute, Carnegie Mellon University, 2000. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=5241

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9323
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9323
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5254044
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5254044
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7505
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7505
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9369
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9369
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=10075
http://www.ncix.gov/publications/pol-icy/docs/CNSSI_4009.pdf
http://www.ncix.gov/publications/pol-icy/docs/CNSSI_4009.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=5581
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=5581
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5241
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5241

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 196
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Mead 2005] Mead, Nancy; Hough, Eric; & Stehney II, Ted. Security Quality Requirements Engi-
neering (CMU/SEI-2005-TR-009). Software Engineering Institute, Carnegie Mellon University,
2005. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7657

[Pleszkoch 2004] Pleszkoch, Mark G. & Linger, Richard C. “Improving Network System Security
with Function Extraction Technology for Automated Calculation of Program Behavior,” 90299.
Proceedings of the 37th Annual Hawaii International Conference on System Sciences
(HICSS’04). Waikoloa, HI, January 5-8, 2004. IEEE, 2004.

[Siviy 2009] Siviy, J.; Moore, A.; Alberts, C.; Woody, C.; & Allen, J. “Value Mapping and Mod-
eling SoS Assurance Technologies and Assurance Supply Chain,” 236-240. Proceedings of the
IEEE International Systems Conference. Vancouver, Canada, March 23-26, 2009. IEEE, 2009.

[Stojkovic 2005] Stojkovic, V.; Steele, G.; & Hyousseu, C. “Implementations of Some Classical
Fundamental Algorithms Based on Actor-Oriented Data Structures and Actors in the Easel Pro-
gramming Language,” 438-443. Proceedings of the International Conference on Integration of
Knowledge Intensive Multi-Agent Systems. Waltham, MA, April 18-21, 2005. IEEE, 2005.

[Woody 2013] Woody, Carol. “Mission Thread Security Analysis: A Tool for Systems Engineers
to Characterize Operational Security Behavior.” INCOSE Insight 16, 2 (July 2013): 37-40.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7657

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 197
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

6 Software Engineering
Methods

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 198
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 199
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Introduction to Software Engineering Methods

 Demands of Increasing Reliance on Software Systems

The SEI strives to anticipate and respond to the implicit and explicit demands of government-ac-
quired systems as the increasing reliance on software evolves. Software engineering methods and
practices have played a critical role in the SEI’s response to these changing needs, ranging from
the development of new understanding on the part of our customers to the development of new
methods and tools that enable customers to improve their practices.

 Evolving Software Configuration Management

One of the major expectations when the SEI began was that software engineering would be sup-
ported by a collection of effective methods and tools. Indeed, an integrated software development
environment was a significant component of the Ada program [Buxton 1981] and, later, in the
Software Technology for Adaptable Reliable Systems (STARS) Program [Druffel 1983]. In the
mid-1980s, there were several commercially developed Ada development environments in the
early stages of availability. The SEI initiated an Ada Environment Evaluation effort. In forming
the plans for evaluating these environments, the SEI saw that each environment approached soft-
ware configuration management differently. After some initial research, the SEI concluded that
although configuration management was an essential component of any software development en-
vironment, the field lacked a solid theoretic basis. Therefore, the SEI launched an initiative in
software configuration management aimed at rectifying this gap. Following a series of SEI-led
workshops and studies, software configuration management concepts and key practices were out-
lined and given a form on which the software community could base the development of tools,
methods, and practices.

 Developing Community Standards: Computer-Aided Software Engineering

Ada and its development environments were on the vanguard of a growing government interest in
the value of community standards. The Navy had a long history in standards and supporting tool
sets. In the late 1980s, the Navy initiated the Next General Computer Resources (NGCR) pro-
gram, a substantial effort to establish community standards for various aspects of Navy systems,
including buses, networks, operating systems, and software engineering environments. The SEI
was positioned to assist and collaborated with the NGCR program, establishing a Computer Aided
Software Engineering (CASE) initiative in 1990. The SEI embarked on the development and cod-
ification of a body of expertise on CASE environment usage and adoption practices, including in-
tegration and reference models. This work was based on a coordinated set of studies and prag-
matic experiments, reinforced by direct customer engagements, such as with the NGCR program
[Brown 1993]. The CASE effort was instrumental in paving the way for the routine use of devel-
opment and integration environments in government programs.

 Developing Community Standards: Open Systems Engineering

Underlying the NGCR program’s intent to form community standards for Navy systems were the
concepts of open systems and open system architectures. Though there was growing use of open
systems within the commercial sector, there was limited understanding of how open system con-
cepts would apply within government programs and government acquisition constraints. The
Navy rightly recognized the need for two key elements: commercial standards that accommodated

https://collaboration.sei.cmu.edu/sites/EmbeddedReal-Time%20and%20CyberPhysical-DONE-12-03-13/Embedded%20Real-TimeandCyberPhysical-updated12-3-13/2-AEST-REST%20131203.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-ConfMgmt131205.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/3-CASE%20131205.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/3-CASE%20131205.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 200
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

government needs, and guidance for transitioning open systems concepts into practice. The Navy
approached the SEI to assist with both elements. The SEI participated on the IEEE POSIX stand-
ards working groups, contributing to the development of open systems standards such that gov-
ernment requirements were accommodated. In addition, the SEI developed a comprehensive
course―the first of its kind―to educate government professionals on the concepts and practices
of open systems engineering. Course development started in 1993, with an initial delivery in
1994. When the DoD Open Systems Joint Task Force (OS-JTF) was formed in 1995, one of its
first activities was to attend the SEI course. Since then, the SEI has delivered the course to all
three U.S. DoD services; several U.S. federal agencies, such as the GAO, and defense organiza-
tions in Canada, the United Kingdom, Australia, and New Zealand. Today, open systems and
open system concepts are still used in defense systems, and the SEI executive-level course is still
delivered in response to customer demand.

 Aiding Understanding of Expanding Technology

As the field of software engineering matured in the 1990s, SEI customers increasingly needed to
comprehend and apply the ever-expanding array of software engineering concepts, methods,
tools, and techniques. The SEI responded to a request from the Air Force acquisition community
to develop the Software Technology Reference Guide (STRG), which provided the Air Force with
an accessible and reliable source for basic information on a wide variety of technologies.

A further trend in the early 1990s was an emerging interest in reengineering within the SEI cus-
tomer base. Faced with declining budgets and a significant investment in existing software sys-
tems, government programs recognized the need to leverage legacy software, rather than to de-
velop new software from scratch, as they tried to meet changing mission needs and accommodate
newer technologies. To compound the problem, these legacy systems were often inadequately
documented and poorly structured. Further, there was an unrealistic expectation that emerging
technology would allow for a straightforward, automated approach to reengineering these legacy
systems. The SEI started a reengineering effort to assist its customers in understanding the issues
and realities of re-engineering legacy assets and migrating these into new systems. In collaborat-
ing with government programs, the SEI developed methods, such as Options Analysis for Reengi-
neering (OAR), which assists programs in more effectively identifying and mining legacy soft-
ware components. Because of the strength and quality of OAR, it has had further impact as the
basis for the key SEI approach for service-oriented systems, the SOA Migration, Adoption, and
Reuse Technique (SMART), discussed in Building and Fielding Interoperating Systems.

 Managing and Engineering COTS-Based Systems

In 1994, a Defense Science Board (DSB) study on the use of commercial products (also referred
to as commercial off-the-shelf, or COTS, products) within defense systems made strong recom-
mendations for the use of COTS products [DSB 1994]. The study provided the impetus for the
SEI to create the COTS-Based Systems (CBS) initiative, which focused on understanding the spe-
cific needs within the defense community. The initiative built on the expertise from the CASE en-
vironments work, which was exploring the use of COTS products in software engineering envi-
ronments. Over the next few years, the SEI led and actively contributed to an international
community that developed key concepts, methods, and practices for managing and engineering
systems that were built using a variety of COTS products. The SEI developed an integrated set of
training courses to increase the government’s awareness, understanding, and skills. These courses

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/4-SWTechnologyRefGuide%20131205.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/5-Reengineering%20131205.docx
http://www.sei.cmu.edu/architecture/tools/smart/index.cfm
http://www.sei.cmu.edu/architecture/tools/smart/index.cfm
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/6-Interop-System%20of%20Systems131205.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/7-COTS-BasedSystems131205.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 201
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

were delivered to Army and Air Force programs, along with civil and defense agencies. One pro-
gram invited the SEI to evaluate its CBS practices to highlight possible deficiencies. As a result,
the SEI saw the need for a more robust example of a development process. This provided the gen-
esis to create the Evolutionary Process for Integrating CBS (EPIC) that subsequently was licensed
by IBM Rational and used as the basis for a CBS plug-in for their Rational Method Composer 7.5
process tool [IBM 2010].

 Assurance Cases: Addressing Systems of Systems Challenges

By the beginning of the new millennium, another evolution in approaches to implementing soft-
ware systems was taking place in defense and federal government communities: net-centric war-
fare, interoperability, and the creation of systems of systems (SoS). The SEI created the Integra-
tion of Software-Intensive Systems initiative. This initiative leveraged the rich history with
COTS-based systems, open systems, reengineering, and software architecture principles to tackle
the growing need for reliable and timely interoperation across multiple systems and organizations.
Since 2004, the SEI has worked with an international community of collaborators to create practi-
cal concepts, frameworks, and methods that enable SEI customers to effectively evolve to the
Global Information Grid (GIG) and potentially realize the benefits of net centricity. As service-
orientation is one approach for net-centric and SoS implementations, the SEI developed extensive
expertise in service-oriented architecture (SOA), creating courses for government personnel, de-
veloping a family of products (including SMART) to support the migration from traditional to
SOA-based systems, and leading the international community in the development of a SOA re-
search agenda.

Net centricity and systems of systems bring new engineering challenges to government communi-
ties on a scale not previously seen. Systems of systems are not built from scratch with a single or-
ganizational entity in control. Rather, they evolve from (parts or all of) existing systems, in vary-
ing stages of development and fielding, that are engineered, managed, and funded across multiple
organizations, usually with no single governing entity. The SEI has developed methods and tech-
niques to assist programs to gain insights into critical perspectives and into expectations about
user demands that exceed those typical in product-centered engineering.

A concern for DoD systems was the need to shorten the certification process for safety, system
reliability, or security. Traditional software and systems engineering techniques, including con-
ventional test and evaluation approaches, were unable to provide the justified confidence needed.
Consequently, a methodology to augment testing and evaluation was required. The SEI’s experi-
ence in areas related to DoD certification needs through its work on rate monotonic analysis and
Simplex led to a more general interest in performance-critical systems. Concurrently, the SEI was
pursuing software issues associated with fault-tolerant computing and systems of systems. Be-
cause of their size, complexity, and continuing evolution, and because net-centric systems can ex-
hibit undesired and unanticipated emergent behavior, the SEI decided on an approach using assur-
ance cases.

An assurance case provides a means to structure the reasoning that engineers use implicitly to
gain confidence that systems will work as expected. The SEI’s early work on assurance cases was
funded by NASA and, although NASA has not yet embraced the idea, NASA research continues
on assurance case approaches. As a result of work with the SEI [Weinstock 2009], the U.S. Food

https://collaboration.sei.cmu.edu/sites/EmbeddedReal-Time%20and%20CyberPhysical-DONE-12-03-13/Embedded%20Real-TimeandCyberPhysical-updated12-3-13/5-Rate%20Monotonic%20Analysis%20131203.docx
https://collaboration.sei.cmu.edu/sites/EmbeddedReal-Time%20and%20CyberPhysical-DONE-12-03-13/Embedded%20Real-TimeandCyberPhysical-updated12-3-13/6-Simplex%20Architecure%20131203.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/6-Interop-System%20of%20Systems131205.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/8-Assurance%20Cases%20131205.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/8-Assurance%20Cases%20131205.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 202
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

and Drug Administration issued draft guidance to manufacturers recommending the use of assur-
ance cases and providing guidance for their use. In response, infusion pump manufacturers are be-
ginning to use assurance cases. The FDA is the only official agency of the U.S. government that
has formally mandated the use of assurance cases to date. At this time, the DoD has not yet em-
braced the use of assurance cases, but continuing work is focused on creating a theory of argu-
mentation that can be used to reason about the amount of confidence in a claim that is provided by
particular pieces of evidence. The expectation is that this work will lead to the ability to determine
how to more effectively use scarce assurance resources.

As DoD software challenges evolve, the SEI will continue to investigate evolving engineering
methods that offer promise for improving capabilities for the future. Just as assurance cases have
not yet matured to the point where DoD programs are ready to apply them, they offer opportunity
for improved safety. Application of such techniques in non-defense systems that exhibit more
constrained characteristics provide the SEI an opportunity to demonstrate the efficacy of such en-
gineering approaches and evolve them to be more robust.

 References

[Brown 1993] Brown, Alan W.; Carney, David J.; Feiler, Peter H.; Oberndorf, Patricia A.; &
Zelkowitz, Marvin V. “A Project Support Environment Reference Model,” 82-89. Proceedings of
TRI-Ada Conference, Seattle, WA, September 18-23, 1993. ACM 1993.

[Buxton1981] Buxton, John & Druffel, Larry. “Requirements for an Ada Programming Environ-
ment: Rationale for Stoneman.” Proceedings of IEEE COMPSAC. IEEE Annual International
Computer and Software Conference (COMPSAC). San Francisco, CA, October 29-31, 1980. Insti-
tute of Electrical and Electronics Engineers, 1981.

[Druffel 1983] Druffel, Larry; Redwine, Samuel, Jr.; & Riddle, William. “The DoD STARS Pro-
gram.” IEEE Computer (November 1983): 21-30.

[DSB 1994] Defense Science Board Task Force (Larry Druffel & George H. Heilmeier, co-
chairs). Acquiring Defense Software Commercially. (Report #859), June 1994.
http://www.dod.mil/pubs/foi/logistics_material_readiness/acq_bud_fin/859.pdf

[IBM 2010] IBM. Rational Unified Process® (RUP®) Plug-ins for Rational Method Composer
7.5. http://www-01.ibm.com/support/docview.wss?uid=swg24028579

[Weinstock 2009] Weinstock, Charles & Goodenough, John. Towards an Assurance Case Prac-
tice for Medical Devices (CMU/SEI-2009-TN-018). Software Engineering Institute, Carnegie
Mellon University, 2009. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8999

http://www.dod.mil/pubs/foi/logistics_material_readiness/acq_bud_fin/859.pdf
http://www-01.ibm.com/support/docview.wss?uid=swg24028579

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 203
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Configuration Management

 The Challenge: Configuration Support for Software Developers

When the SEI was founded in the mid-1980s, software development was already a complex activ-
ity, with single projects often involving millions of lines of code and large (often distributed)
teams of developers. At the time, developers in government and industry, including government
contractors, adapted established configuration management (CM) practices in other engineering
disciplines, such as versioning of design documents and physical system parts and managing
changes through change control boards [IEEE 1987]. They complemented these practices with
version control systems to manage versions and revisions of their source code; they used data-
bases for tracking versions and changes to the artifacts. Many were home-grown systems. How-
ever, software development presented several unique challenges. First, software development is a
continuous design activity in which bug removal affects the design. Second, software design and
source code are easily changed, and configuration, parameterization, and deployment of software
on hardware can result in unexpected system behavior. Third, software development is easily dis-
tributed across multiple teams, thanks to networked computing environments, which were emerg-
ing in the early 1980s. Finally, at that time, system engineering drove the development process,
with software developers getting involved late in the process and having to write code against am-
biguous specifications and repeatedly changing requirements. (These were some of the factors
contributing to the software crisis that prompted the establishment of the SEI.)

 A Solution: Configuration Management Tools

In the 1980s, DARPA—the main SEI sponsor—was interested in research into configuration sup-
port for software development environments, both for Ada specifically and for environments in
general. At the SEI, work was soon under way to establish a framework for improving the soft-
ware process, which became known as the Capability Maturity Model [Humphrey 1988]. This
framework included configuration management as a key process area, leveraging established CM
practices [IEEE 1987].

From the mid-1980s to 1993, the SEI worked on tool-based solutions supporting the full software
development process and complementing the organizational process focus of the CMM. The SEI
quickly expanded from evaluating Ada environments [Weiderman 1987] to integrated software
development environments (ISDE). Recognizing the challenges of configuration management for
software, in 1988 the SEI established a series of international software configuration management
workshops under the auspices of the ACM, chairing the first set of workshops [Winkler 1988,
Feiler 1991]. These workshops continued for more than a decade. The SEI published papers on
the role of CM in integrated environments [Dart 1989], the different roles CM plays throughout
the software system lifecycle and the concepts supporting them [Feiler 1988], and process support
through CM [Feiler 1989]. To facilitate collaboration between the software process and the ISDE
research communities, the SEI published a set of software process development and enactment
concepts and definitions [Feiler 1992]. As promising research results emerged, the SEI assessed
the state of the art in ISDE and its support for CM [Brown 1992, 1993a]. In the early 1990s, the
SEI provided the co-chair of the Navy NGCR Project Support Environments Standards Working
Group (PSESWG) and took on a lead role in the development of a reference model for Integrated
Software Engineering Environments [Brown 1993b], which included configuration management

https://collaboration.sei.cmu.edu/sites/ManagementChapter/ManagementChapter/2-The%20Capability%20Maturity%20Model%20for%20Software%2014103.docx
https://collaboration.sei.cmu.edu/sites/EmbeddedReal-Time%20and%20CyberPhysical-DONE-12-03-13/Embedded%20Real-TimeandCyberPhysical-updated12-3-13/2-AEST-REST%20131203.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 204
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

as a key service and became a NIST/European Computer Manufacturers Association
(NIST/ECMA) standard [NIST 1994].

Research into architecture modeling languages for embedded software systems and increased in-
terest in model-based software engineering spawned new interest in CM [Westfechtel 2003,
Estublier 2005]. In the mid-1990s, the SEI developed the Simplex architecture [Sha 1996], which
provides software fault-tolerance for control systems through self-adaptive semantic redundancy.
In the context of the Simplex architecture, the SEI worked with Carnegie Mellon University re-
searchers to investigate the use of architecture models to analyze system configurations for incon-
sistencies and, during operation, to manage dynamically
reconfiguring systems against known consistency con-
straints [Feiler 1998]. The investigation demonstrated
the feasibility of extending configuration consistency
into the operational environment through formalized
specification and analysis of system models.

As DARPA-funded research in architecture languages
produced promising results, the SEI, in collaboration
with the U.S. Army Aviation and Missile Research De-
velopment and Engineering Center (AMRDEC), took on
the technical leadership in the development of the indus-
try standard Architecture Analysis and Design Language
(AADL). AADL has been chosen as a key technology
by the aerospace industry in its System Architecture Virtual Integration (SAVI) initiative because
of AADL’s ability to support large-scale, multi-team modeling and analysis.

 The Consequence: Configuration Management and CM Tools in Common
Practice

Software developers gained control over the versions and configurations during the software de-
velopment lifecycle. Commercial and open source versions of configuration management tools
have become an integral part of their development environment, transparent and requiring no
overhead to use. Their capabilities have been extended to uniformly support individual develop-
ers’ workspaces and cooperative team development. The tools also have been extended to support
build and release management of artifacts ranging from documents to models, source code, bina-
ries, build-and-installation configuration files, and other artifacts. De facto open source standards
in integrated development environments (Eclipse) and distributed configuration management
(GIT) have been embraced by industry and government and have been used by the SEI as the ba-
sis for OSATE.CM has become well established in the community in other ways. See, for exam-
ple, Crossroads web-based resources on CM50 and CM tool recommendations [Burrows 2005].

Despite these advances, new challenges are being posed to CM through the emergence of ultra-
large-scale systems [Northrop 2006], such as web-enabled, rapidly evolving, user-adaptable sys-
tems.

50 Home page: http://www.cmcrossroads.com/

The View from Others

The SEI’s background and exper-
tise were key to the development of
the PSEWG Reference Model.
Without these contributions, this
reference model would not have
been as rich or meaningful.

– Patricia Oberndorf, U.S.
Navy, Next Generation
Computer Resources
Program

https://collaboration.sei.cmu.edu/sites/EmbeddedReal-Time%20and%20CyberPhysical-DONE-12-03-13/Embedded%20Real-TimeandCyberPhysical-updated12-3-13/6-Simplex%20Architecure%20131203.docx
https://collaboration.sei.cmu.edu/sites/EmbeddedReal-Time%20and%20CyberPhysical-DONE-12-03-13/Embedded%20Real-TimeandCyberPhysical-updated12-3-13/10-SAEAADL%20131203.docx
https://collaboration.sei.cmu.edu/sites/EmbeddedReal-Time%20and%20CyberPhysical-DONE-12-03-13/Embedded%20Real-TimeandCyberPhysical-updated12-3-13/10-SAEAADL%20131203.docx
http://www.cmcrossroads.com/

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 205
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 The SEI Contribution

The SEI recognized the need to complement the process focus of the CMM with a better under-
standing of how to develop integrated software development environments that support both indi-
vidual developers and teams throughout the lifecycle. Toward that end, the SEI fostered research
into configuration management concepts both that meet the needs of software configuration man-
agement users and that develop a standard reference model for integrated environments. This re-
search resulted in a crop of CM tools that more transparently integrated with tool environments.
The SEI continued to promote CM concepts as the software engineering community embraced
model-based engineering and architecture-centric engineering. By taking on technical leadership
of the SAE AADL standard, the SEI was able to integrate two DARPA-funded research architec-
ture languages (MetaH and ACME) and incorporate CM support to meet practitioners’ needs. By
choosing AADL as a key technology in the SAVI initiative and collaborating with the SEI in es-
tablishing requirements for a model repository that include consistent CM of models, the aero-
space industry has shown its appreciation of SEI’s expertise in CM as well as architecture-centric,
model-based engineering technologies the SEI has developed.

CM has become part of the SEI Product Line Practice Framework.

 References

[Burrows 2005] Burrows, Clive & Wesley, Ian. Ovum Evaluates: Configuration Management.
Ovum Ltd., 2005.

[Brown 1992] Brown, A.; Dart, S.; Feiler, P.; & Wallnau, K. “The State of Automated Configura-
tion Management.” Software Engineering Institute Annual Technology Review. Software Engi-
neering Institute, Carnegie Mellon University, 1992. ftp://ftp.sei.cmu.edu/pub/case-env/con-
fig_mgt/papers/atr_cm_state.pdf

[Brown 1993a] Brown, A. W.; Wallnau, K. C.; & Feiler, P. H. “Understanding Integration in a
Software Development Environment: Issues and Illustrations.” Journal of Systems Integration,
September 1993.

[Brown 1993b] Brown, Alan W.; Carney, David J.; Feiler, Peter H.; Oberndorf, Patricia A.; &
Zelkowitz, Marvin V. “A Project Support Environment Reference Model,” 82-89. Proceedings of
TRI-Ada Conference, Seattle, WA, September 18–23, 1993. ACM 1993.

[Dart 1989] Dart, Susan A. & Feiler, Peter H. “Configuration Management in CASE Tools and
Environments.” Third International Workshop on Computer-Aided Software Engineering. CASE
89, London, July 17–21, 1989. IEEE Computer Society, 1989.

[Estublier 2005] Estublier, Jacky; Leblang, David; van der Hoek, Andre; Conradi, Reidar;
Clemm, Geoffrey; Tichy, Walter; & Wiborg-Weber, Darcy. “Impact of Software Engineering Re-
search on the Practice of Software Configuration Management.” ACM Transactions on Software
Engineering and Methodology 14, 4 (October 2005): 383-430.

[Feiler 1988] Feiler, Peter H.; Dart, Susan A.; & Downey, Grace. Evaluation of the Rational Envi-
ronment (CMU/SEI-88-TR-015). Software Engineering Institute, Carnegie Mellon University,
1988. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=10637

https://collaboration.sei.cmu.edu/sites/Architecture/ArchitectureChapter/9-Software%20Product%20Lines%20140213.docx
ftp://ftp.sei.cmu.edu/pub/case-env/con-fig_mgt/papers/atr_cm_state.pdf
ftp://ftp.sei.cmu.edu/pub/case-env/con-fig_mgt/papers/atr_cm_state.pdf

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 206
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Feiler 1989] Feiler, Peter H. “Software Process Support Through Software Configuration Man-
agement.” Fifth International Software Process Workshop. Kennebunkport, ME, October 10–13,
1989. ACM Press, 1989.

[Feiler 1991] Feiler, Peter H., ed. Proceedings of 3rd International Software Configuration Man-
agement Workshop. Trondheim, Norway, June 12–14, 1991. ACM Press, 1991.

[Feiler 1992] Feiler, Peter H. & Humphrey, Watts. “Software Process Development and Enact-
ment: Concepts and Definitions.” Communication of the ACM 35, 9 (September 1992): 75-90.

[Feiler 1998] Feiler, Peter H. & Li, Jun. “Consistency in Dynamic Reconfiguration.” Proceedings
of the 4th International Conference on Configurable Distributed Systems. Annapolis, MD, May
4–6, 1998. IEEE Computer Society Press, 1998.

[Humphrey 1988] Humphrey, Watts S. “Characterizing the Software Process: A Maturity Frame-
work.” IEEE Software 5, 2 (March 1988): 73-79.

[IEEE 1987] Institute of Electrical and Electronic Engineers. IEEE Guide to Software Configura-
tion Management. (IEEE/ANSI Standard 1042-1987). IEEE, 1987.

[NIST 1994] National Institute of Standards and Technology. Reference Model for Project Sup-
port Environments. NIST Special Publication 500-213. (Co-published as Technical Report ECMA
TR/69). NIST, 1994.

[Northrop 2006] Northrop, L.; Balzer, R.; Sullivan, K.; Gabriel, R.; Smith, D.; Klein, M.; Feiler,
P., et al. Ultra-Large-Scale Systems: Software Challenge of the Future. Study and report commis-
sioned by Claude M. Bolton Jr., Assistant Secretary of the Army (Acquisition, Logistics, and
Technology). Software Engineering Institute, Carnegie Mellon University, 2006.
http://www.sei.cmu.edu/uls/

[Sha 1996] Sha, R. Rajkumar & Gagliardi, M. “Evolving Dependable Real-Time Systems,” 335-
346. 1996 IEEE Aerospace Applications Conference Proceedings. Aspen, CO, March 10, 1996.
IEEE, 1996.

[Weiderman 1987] Weiderman, Nelson H. Evaluation of Ada Environments: Executive Summary
(CMU/SEI-87-TR-1). Software Engineering Institute, Carnegie Mellon University, 1987.
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1139&context=sei

[Westfechtel 2003] Westfechtel, Bernhard & Conradi, Reidar. “Software Architecture and Soft-
ware Configuration Management,” 24-39. Proceedings of the ICSE Workshops SCM 2001 and
SCM 2003: Selected Papers. van der Hoek, A. & Westfechtel, B., eds. (Published as Lecture
Notes in Computer Science 2649). Springer-Verlag, 2003.

[Winkler 1988] Winkler, J. F. H., ed. Proceedings of the International Workshop on Software
Version and Configuration Control. Grassau, Germany, January 27-29, 1988. ACM Press, 1988.

http://www.sei.cmu.edu/uls/
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1139&context=sei

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 207
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 CASE Environments

 The Challenge: Making Smart Decision on Tools and Environments

In the late 1980s, a number of computer-aided software engineering (CASE) tools51 had become
available with claims about how they could provide benefits for developing better software. Ex-
pectations were high for these CASE tools, particularly those that supported modeling of soft-
ware, but also for new generations of configuration management/version control, code analysis,
testing, and other tools. DoD program managers expressed a strong need for help in making deci-
sions on the competing claims of tool vendors.52

 A Solution: CASE Tool Integration

The SEI responded to the DoD need in 1989 by analyzing how to best help DoD organizations
make better decisions on the selection, adoption, and integration of CASE tools. In addition, the
SEI convened a series of workshops to better understand the requirements of DoD managers, as
well as to get the perspectives of the research community and tool-vendor community [Huff
1992a, 1992b].

Although there had initially been sentiment from some DoD programs to develop a rating scale
for the various tools, the results of the workshops and the SEI team’s ongoing analysis indicated
that this approach was infeasible. It would be difficult to procure the many tools entering the mar-
ketplace, construct the necessary computing environment, install the tools, and train staff in their
use. In addition, because the CASE tools evolve over time, information provided for one tool ver-
sion could be invalidated by the next version.

As a result, the SEI addressed DoD needs by focusing initially on strategies for adopting and inte-
grating a set of tools, and it developed a widely used Guide to CASE Adoption [Smith 1992]. This
guide emphasized the need for making an informed decision by identifying a need selection crite-
ria, performing trial implementations, and defining an adoption strategy. The SEI addressed issues
of cost, performance, process support, maintenance, data management, tool integration, and stand-
ardization [Zarrella 1991]. In a series of case studies, the SEI found that the state of the practice of
CASE tool use was modest compared to the marketing claims [Rader 1993]. However, these stud-
ies documented the ways in which organizations overcame the shortcomings of tools current at
that time through commitment, ingenuity, and attention to end-user needs.

The approach to tool integration evolved. The commercial CASE market had initially focused on
vendor-centric individual tools, with a predominant emphasis on analysis and design tools. Many
organizations were making improvements to their software engineering practices by incorporating
various types of CASE tools, but the tools typically did not work together. As a result, manual in-
tervention was often used to move data between tools, but this solution was both impractical and,
in some cases, nearly impossible because of the divergent data models and interaction strategies
of the individual tools. Some vendors positioned their tool as an integration platform, thereby
locking users into the specific tool, associated development processes, and related vendors. (There

51 Examples were CADRE Teamwork and Software Through Pictures.

52 The SEI Senior Technical Review Committee expressed this as one of the top priorities from the
perspective of DoD programs.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 208
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

were a few exceptions. For instance, the Rational Environment was a collection of integrated
tools, although it was limited to supporting Ada.)

Government- and association-sponsored efforts, rather than focusing on a specific vendor product
or product suite, developed standards for open-tool-integration frameworks that could incorporate
a variety of tools and reflect many processes. Extensive projects were developed in the United
States, with work on the Common APSE Interface Set—Revision A [CAIS-A 1986]; in Europe,
ECMA [ECMA 1997] defined the standards for the Portable Common Tool Environment (PCTE).

The SEI gathered insights on how organizations were integrating tools in practice—the software
and hardware environments in which tool integration occurred, the goals of integration, the tools
integrated, mechanisms used, and the standards applied [Morris 1991]. This data on the state of
tool and environment integration at that time, as well as emerging trends in integration, were valu-
able starting points for experiments in integration that the SEI undertook. The SEI identified the
potential importance of message passing as an integration mechanism [Brown 1992] and dis-
cussed the use of such a mechanism as the basis for a more flexible environment that is open to
experimentation with different approaches to integration. This discussion led to a series of tool-
integration experiments [Zarrella 1994]. These experiments integrated a set of CASE tools using a
combination of data-integration mechanisms (PCTE, Object Management System [OMS] and
UNIX file system) and control-integration mechanisms (Broadcast Message Server [BMS] of HP
SoftBench). The experiments demonstrated the possibility of integrating CASE tools using a mes-
sage-passing approach that is independent of the integration-framework product used. The work
on CASE integration culminated in the book Principles of CASE Tool Integration [Brown 1994].

The National Security Agency funded the CASE environments SEI work for seven years and pro-
vided four resident affiliates for the SEI team. The team also supplied two members to the Navy’s
NGCR-PSEWG. These members co-authored a reference model for project-support environments
[Brown 1993].

 The Consequence: CASE Tools Widely Used in Practice

The CASE adoption work was widely used within DoD organizations and commercial organiza-
tions. The SEI Guide to Case Adoption served as the starting point for IEEE [IEEE 1995] and,
later, ISO recommended practices on CASE adoption [ISO/IEC 2007]. SEI staff members were
invited to be co-editors of these reports.

The work on integration had an immediate impact on significant DoD and Federal Aviation Ad-
ministration acquisitions. The SEI experiments that demonstrated the utility of control integration
through message passing helped to influence tool vendors and researchers to look at this tech-
nique as a more fruitful approach to interoperability than the earlier emphases on data integration.

With the SEI reputation of giving informed, unbiased technical judgments, its expertise was
sought for complex decision making by program managers who had to make decisions on major
acquisitions, such as the I-CASE procurement, FAA in-flight system, and the Ballistic Missile
Defense Organization. In addition, its expertise was requested for DARPA research and demon-
stration projects, including STARS and Evolutionary Design of Complex Software (EDCS). The
NSA used the insights from the Guide to CASE Adoption as well as insights from the integration
experiments extensively in the adoption of its own software tool environment.

https://collaboration.sei.cmu.edu/sites/ArchitectureChapter-Done-ckd-12-04-13/Architecture-fixed-12-04-13/7-FAA%20Study%20131119.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 209
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 The SEI Contribution

The CASE work demonstrated how a small group of technical people from the SEI were able both
to influence significant DoD programs and to identify challenges that had significant influence on
the research community. At the time, many program managers were focused on the question,
“Which is the best tool?” The SEI stepped back to ask, “What is the underlying problem that this
question is trying to solve?” The work on CASE adoption provided valuable guidance for DoD
program managers. It was also used as an example of best practice in the work of the IEEE and
ISO/IEC recommended practices.

The work on integration had an immediate impact on DoD and FAA acquisitions, along with tool
adoption in other government agencies. The thread was carried though in later research on SOA
and COTS-based integration. It influenced both the broader research community as well as later
SEI efforts in COTS-based systems, predictable assembly from certifiable components (PACC),
integration of software-intensive systems, systems of systems, and advanced mobile systems.

 References

[Brown 1992] Brown, Alan. Control Integration through Message Passing (CMU/SEI-92-TR-
035). Software Engineering Institute, Carnegie Mellon University, 1992. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=11757

[Brown 1993] Brown, Alan W.; Carney, David J.; Feiler, Peter H.; Oberndorf, Patricia A.; &
Zelkowitz, Marvin V. “A Project Support Environment Reference Model,” 82-89. Proceedings of
TRI-Ada Conference. Seattle, WA, September 18–23, 1993. ACM 1993.

[Brown 1994] Brown, A. W.; Carney, D. J; Morris, E. J.; Smith, D.; & Zarrella, P. Principles of
CASE Tool Integration. Oxford University Press, 1994 (ISBN 0195094786).

[CAIS-A 1986] Munck, R; Oberndorf, P; Ploedereder, E; & Thai, R. An Overview of DOD-STD-
1838A (proposed), The Common APSE Interface Set, A Revision. Department of Defense, 1986.

[ECMA 1997] ECMA. Standard ECMA-149 4th Edition. Portable Common Tool Environment
(PCTE)—Abstract Specification. ECMA, 1997.

[Huff 1992a] Huff, Cliff; Smith, Dennis; Stepien-Oakes, Kimberly; & Morris, Edwin. Proceed-
ings of the CASE Adoption Workshop (CMU/SEI-91-TR-014). Software Engineering Institute,
Carnegie Mellon University, 1992. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=11385

[Huff 1992b] Huff, Cliff; Smith, Dennis; Morris, Edwin; & Zarrella, Paul. Proceedings of the
CASE Management Workshop (CMU/SEI-92-TR-006). Software Engineering Institute, Carnegie
Mellon University, 1992. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11601

[IEEE 1995] Institute of Electrical and Electronic Engineers. IEEE Recommended Practice for the
Adoption of Computer-Aided Software Engineering (CASE) Tools. (IEEE Standard1348-1995).
IEEE, 1995. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?reload=true&punumber=3688

[ISO/IEC 2007] ISO/IEC/JTC 1/SC 4. Guidelines for the Adoption of CASE Tools (TR 14471).
ISO/IEC, 1997.

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/7-COTS-BasedSystems131205.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/6-Interop-System%20of%20Systems131205.docx
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=11757
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=11757
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=11385
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=11385
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11601
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?reload=true&punumber=3688

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 210
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Morris 1991] Morris, Ed; Feiler, Peter; & Smith, Dennis. CASE Studies in Environment Integra-
tion (CMU/SEI-91-TR-013). Software Engineering Institute, Carnegie Mellon University, 1991.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11381

[Rader 1993] Rader, Jock; Brown, Alan; & Morris, Edwin. An Investigation into the State of the
Practice of CASE Tool Integration (CMU/SEI-93-TR-015). Software Engineering Institute, Car-
negie Mellon University, 1993. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=11909

[Smith 1992] Smith, Dennis; Morris, Edwin; & Stepien-Oakes, Kimberly. Guide to CASE Adop-
tion (CMU/SEI-92-TR-015). Software Engineering Institute, Carnegie Mellon University, 1992.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11647

[Zarrella 1991] Zarrella, Paul; Smith, Dennis; & Morris, Edwin. Issues in Tool Acquisition
(CMU/SEI-91-TR-008). Software Engineering Institute, Carnegie Mellon University, 1991.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11349

[Zarrella 1994] Zarrella, Paul & Brown, Alan. Replacing the Message Service Component in an
Integration Framework (CMU/SEI-94-TR-017). Software Engineering Institute, Carnegie Mellon
University, 1994. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12217

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11381
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=11909
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=11909
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11647
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11349

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 211
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Software Technology Reference Guide

 The Challenge: Effective Software Technology Adoption

Software technology adoption is a challenge in a field where the technology is constantly chang-
ing, along with the needs of the adopters. Technology consists “not just of the technical artifacts
but the knowledge embedded in those artifacts and the knowledge required for their effective use”
[Foreman 1997, p. 44]. Technology users need knowledge that enables them to systematically
plan research and development (R&D), as well as perform technology insertion activities to meet
their organization’s current and future needs.

 A Solution: Software Technology Reference Guide

The U.S. Air Force acquisition community tasked the SEI to create a reference document that
would provide the Air Force with greater understanding of software technologies to support its
R&D and adoption plans.

Members of the SEI, the Air Force,53 and government contractors worked as a cooperative team
to produce the Software Technology Reference Guide (STRG), which was first published in 1997
[Foreman 1997]. In a rather novel approach, several government contractors54 provided personnel
for several months to aid in the evolution of document concepts and to author the majority of the
technology descriptions. In the early phases of the project, the document was also referred to as
the Software Technology Roadmap and the Structured Survey of Software Technology.

The 1997 reference guide included then-current information on 60 technologies, each described in
four to six pages. The descriptions underwent rigorous review by nearly 50 experts in the commu-
nity. The guide emphasized software technologies that were important to the command, control,
communications, computers, and intelligence (C4I) area; however, much of the information could
be applied broadly. The information was relevant to any complex, large-scale, distributed, real-
time, software-intensive, embedded system. The major concerns for these systems are reliability,
availability, safety, security, performance, maintainability, and cost. In 1998, the STRG was
“reengineered,” becoming one of the first interactive, web-enabled reference guides, which signif-
icantly increased its availability and impact.

 The Consequence: Unbiased Information Used for Selecting Technology

The Software Technology Reference Guide provided common ground for contractors, researchers,
government program offices, and other software-related organizations to assess technology. The
information in the guide was encapsulated so that readers could rapidly make a preliminary deci-
sion as to whether further study/examination of a technology for potential use was warranted. The
technology descriptions layered information so that readers could get a focused synopsis of the
technology and find subordinate technology descriptions and pointers to sources of more detailed
information, including the experience of others. In addition, the technology descriptions provided

53 Capt Mark Gerken and Elizabeth Kean, Rome Laboratory; Capt Gary Haines, AFMC SSSG; and

Maj David Luginbuhl, Air Force Office of Scientific Research [Foreman 1997].

54 Lockheed Martin (Michael Bray and William Mills); GTE (Darleen Sadoski); E-System (James
Shimp); Kaman Sciences (Edmond Van Doren); and TRW (Cory Vondrak) [Foreman 1997].

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 212
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

insight into costs, risks, quality, ease of use, and alternatives; it described the shortcomings of
technologies as well as the advantages. Thus, readers knew where to go for more information and
what questions to ask.

Readers gained knowledge that allowed them to make well-informed plans and decide on the best
route to selecting and adopting technology that met their particular needs.

 The SEI Contribution

Developing the Software Technology Reference Guide was a cooperative effort of the SEI, de-
fense contractors, and the U.S. Air Force. The SEI members of the development team established
the project direction, evolved the template of the technology descriptions, wrote some of the tech-
nology descriptions, integrated and edited contributions from all team members, published the
document, and made it available to the public through the SEI website in both document and in-
teractive online versions. Prior to this effort, no other source provided the same type of software
technology information in one place. The knowledge provided in the guide enabled the Air Force
to systematically plan the research and development and technology insertion required to meet
current and future Air Force needs, from the upgrade and evolution of current systems to the de-
velopment of new systems. The web-enabled version, in particular, gave the same benefits to the
broader community. In fact, the STRG was the number one most referenced set of webpages at
the SEI for several years.

 References

[Foreman 1997] Foreman, John; Gross, Jon; Rosenstein, Robert; Fisher, David; & Brune, Kim-
berly. C4 Software Technology Reference Guide: A Prototype (CMU/SEI-97-HB-001). Software
Engineering Institute, Carnegie Mellon University, 1997. http://resources.sei.cmu.edu/library/as-
set-view.cfm?AssetID=12689

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 213
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Reengineering

 The Challenge: Legacy Software in Defense Systems

In the early 1990s, the DoD had a number of legacy systems that had been developed in the previ-
ous decades to inject automated technology into the nation’s defense. At the time these systems
were developed, there were no precedents or guidelines for developing, managing, or updating
large-scale systems [Goodenough 1970]. However, the problem of updating and revising legacy
systems was growing rapidly; it had become particularly difficult because of the sheer size and
magnitude of DoD systems, as well as the fact that contracts for many of the early systems had
been awarded to the lowest bidder, thereby inhibiting “extra work” to design for maintainability.
As a result, there was a diversity of hardware and software in systems that were difficult to mod-
ify and to integrate with other systems.

The challenge for DoD program managers was to make both programmatic and technical deci-
sions on whether to maintain existing systems, reengineer existing systems to insert new capabili-
ties, or develop replacement systems. There was little guidance for making these decisions.

 A Solution: A Reengineering Center

The SEI received strong statements of need from DoD stakeholders to address the problem of
maintenance and reengineering. The SEI wrote a white paper on options for addressing this need
[Feiler 1993]. This paper recognized that the research community had been active in addressing
the reengineering problem and that reengineering did not represent a novel technical problem; its
solution required the application of known software engineering principles to a different problem
set. A seminal paper defining the field of reengineering had been published [Chikofsky 1990], and
extensive research was underway; for example, a comprehensive set of papers and articles had re-
cently been published [Arnold 1993]. Consequently, the paper recommended that the SEI become
a clearinghouse of research for the DoD and research community, rather than initiate a new re-
search program that could duplicate current work. A Reengineering Center was established with a
small group of people to encourage and leverage work within the SEI, serve as a conduit between
SEI work and the research community, communicate DoD needs to the research community, and
make research findings accessible to the DoD. In this role, the SEI would become part of the com-
munity, articulate major challenges that needed to be addressed—especially those that were being
faced by DoD program managers, and leverage existing resources and research. It would also fill
the important role of enabling DoD organizations to separate reality from the large volume of
claims that were permeating the media.

The SEI technical approach encompassed three broad areas:
1. development of broad frameworks that articulated DoD needs for the research community

through a collection of papers. One set of papers provided a framework for program under-
standing, which was a key technical issue for software reengineering [Tilley 1996a]. Another
set identified trends and needs and provided a focus for research in reengineering and related
areas [Tilley 1996b]. A third set focused on software migration, and this was used by DoD
programs in making comprehensive migration decisions [Bergey 2001].

2. publication of online resources of reengineering materials that included an identification and
classification of challenges, as well as resources DoD program managers could use in making
decisions [Bergey 1999, Feiler 1993, Kontogiannis 2009].

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 214
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

3. leveraging of other SEI work from related technical areas and work from the reengineering
community to provide support for DoD programs [Kazman 1999]. This work included the ar-
eas of architecture reconstruction and architecture models for reengineering [Kazman 1998].

 The Consequence: Effective Decision Making About Reengineering

The Army Training Support Center (ASTC), FAA, and Joint Logistics Center (JLC), among other
organizations, used SEI support for their reengineering programs. At ATSC, a model was imple-
mented for identifying and providing guidance for making reengineering decisions at key points
in the program lifecycle. The ATSC used the migration framework as a framework for making de-
cisions on migration to a family of new systems, and the National Security Agency used it as a ba-
sis for migrating to a set of reengineering tools and methods. The JLC work resulted in guidance
for choosing methods and technology that was used widely within the DoD community. The ef-
fort with FAA resulted in a series of recommendations that were followed rigorously in the imple-
mentation of the currently operational FAA in-flight system.

 The SEI Contribution

The SEI researchers identified broad trends and needs in reengineering for the DoD. As a result of
the frameworks that were developed, the SEI established credibility and was invited to participate
in leadership roles in the broader research community. The SEI focused on several areas that were
of direct importance to the DoD, such as developing a migration model and a model for program
understanding. A clearinghouse of reengineering information was developed and distributed on
the SEI website in order to make it available for DoD programs. The SEI provided direct support
for the DoD and other federal government programs, including the FAA, Army ATSC, JLC, and
NSA.

DoD organizations recognized the leadership role of the SEI in reengineering and migration of
legacy assets. The DoD JLC requested SEI technical participation on its Software Reuse Commit-
tee. The SEI project leader was invited to lead workshops on software reengineering challenges
for the DoD and to participate in an updated version of the DoD software reengineering hand-
book.

The SEI technical papers contributed to recognition of SEI researchers as leaders in the field; SEI
staff members presented papers, workshops and tutorials at conferences in the area. They were
also elected to leadership positions in conferences including IWPC, STEP and ICSM.

The Reengineering Center formalized the SEI’s role as a link between DoD needs, other SEI re-
search, and the external research community. It established mechanisms that would be replicated
in other areas. The approach of identifying open research challenges, becoming leaders within a
specific research community, serving as a broker between DoD needs and the research commu-
nity, identifying specific technical gaps for SEI research, and providing direct support to selected
programs, is not unique to the reengineering work. This approach has evolved to become standard
in most current SEI research projects and has been adopted by SEI technical projects as well.

 References

[Arnold 1993] Arnold, Robert S. Software Reengineering. IEEE Computer Society Press, 1993
(ISBN 0818632720).

https://collaboration.sei.cmu.edu/sites/ArchitectureChapter-Done-ckd-12-04-13/Architecture-fixed-12-04-13/7-FAA%20Study%20131119.docx
https://collaboration.sei.cmu.edu/sites/ArchitectureChapter-Done-ckd-12-04-13/Architecture-fixed-12-04-13/7-FAA%20Study%20131119.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 215
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Bergey 1999] Bergey, John; Smith, Dennis; Tilley, Scott; Weiderman, Nelson; & Woods, Steve.
Why Reengineering Projects Fail (CMU/SEI-99-TR-010). Software Engineering Institute, Carne-
gie Mellon University, 1999. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=13405

[Bergey 2001] Bergey, John; O’Brien, Liam; & Smith, Dennis. DoD Software Migration Plan-
ning (CMU/SEI-2001-TN-012). Software Engineering Institute, Carnegie Mellon University,
2001. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5489

[Chikofsky 1990] Chikofsky, E. & Cross, J. “Reverse Engineering and Design Recovery: A Tax-
onomy.” IEEE Software 7, 1(January 1990):13-18.

[Feiler 1993] Feiler, Peter. Reengineering: An Engineering Problem (CMU/SEI-03-SR-5). Soft-
ware Engineering Institute, Carnegie Mellon University, 1993. http://resources.sei.cmu.edu/as-
set_files/SpecialReport/1993_003_001_16139.pdf

[Goodenough 1970] Goodenough, John. Appendix A in Overton, R. K. et al. A Study of the Fun-
damental Factors Underlying Software Maintenance Problems: Final Report (ESD-TR-72-121).
Deputy for Command and Management Systems, HQ Electronic Systems Division (AFSC), 1971.

[Kazman 1998] Kazman, R.; Woods, S.; & Carrière, J. “Requirements for Integrating Software
Architecture and Reengineering Models: CORUM II,” 54-153. Proceedings of the Fifth Working
Conference on Reverse Engineering (WCRE). Honolulu, HI, October 12–14, 1998. IEEE Com-
puter Society Press, 1998.

[Kazman 1999] Kazman, R. & Carrière, J. “Playing Detective: Reconstructing Software Architec-
ture from Available Evidence.” Automated Software Engineering 6, 2 (April 1999): 106-138.

[Kontogiannis 2009] Kontogiannis, Kostas; Lewis, Grace; & Smith, Dennis B. A Research Per-
spective on Maintenance and Reengineering of Service-Oriented Systems. Software Engineering
Institute, Carnegie Mellon University, 2009. http://resources.sei.cmu.edu/library/asset-
view.cfm?assetID=29035

[Tilley 1996a] Tilley, S. R.; Paul, S.; & Smith, D. B. “Towards a Framework for Program Under-
standing,” 19-28. Proceedings of Fourth Workshop on Program Comprehension. Detroit, MI,
March 29–31, 1996. IEEE, 1996.

[Tilley 1996b] Tilley, Scott & Smith, Dennis. Coming Attractions in Program Understanding
(CMU/SEI-96-TR-019). Software Engineering Institute, Carnegie Mellon University, 1996.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12613

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=13405
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5489
http://resources.sei.cmu.edu/as-set_files/SpecialReport/1993_003_001_16139.pdf
http://resources.sei.cmu.edu/as-set_files/SpecialReport/1993_003_001_16139.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=29035
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=29035

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 216
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Building and Fielding Interoperating Systems

 The Challenge: Interoperability in Evolving Defense Systems

Most of the software-reliant systems that traditionally supported operations in the DoD, particu-
larly in the military theater—including planning, manpower, and logistics—were designed as
stand-alone systems. They had limited capabilities for net-centric warfare, such as the efficient
and secure exchange of information across a networked force of weapons, sensors, and soldiers.
In addition, acquisition practices, system architectures, and engineering solutions were optimized
for stand-alone systems. The Gulf War I (circa 1990) catalyzed a new emphasis on the timely, ef-
ficient, and secure exchange of information across independently developed software-reliant sys-
tems, with interoperation among them—a particularly significant need because of the war’s multi-
service nature. This critical need was not just in the DoD and with its coalition partners, but in ci-
vilian government and industry as well.

Many organizations recognized that a system of systems (SoS)55 could help them achieve im-
portant business and mission goals more effectively; however, they needed guidance on how to
create systems of systems out of legacy systems and new systems (either fielded or under devel-
opment) that were not necessarily designed to work together. The challenge is significant because
organizations must create systems of systems when it is difficult to know which systems will need
to be involved in the future and when knowledge of system behavior is incomplete. It is equally
difficult to predict what data a system holds that will be of value to others. Finally, in a system of
systems, there is often no practical central control over all the systems involved. The challenge is
complex, with technical, operational, governance, management, and acquisition aspects.

 A Solution: Multi-Faceted Approach to Support for Interoperation

The SEI started, in the mid-1990s, to seek solutions to the interoperation of independently evolv-
ing systems, focusing on integrating commercial off-the-shelf products. In 2002–2003, the SEI
conducted the System of Systems Interoperability (SOSI) research project. Through this project,
the researchers realized that interoperability must occur not only at the technical level but also at
the program office/governance level. By 2004, the SEI’s focus shifted to finding a general solu-
tion for the interoperability needs of government and industry organizations as they faced unprec-
edented issues in migrating to network-centric operations and systems of systems.

The approach to systems of systems was two pronged: defining fundamental principles and con-
cepts and developing techniques for putting the principles into practice. Among the principles
were these:
1. Independent and continuous evolution of individual systems means that system-of-systems

behavior cannot be completely predicted.

55 Admiral William Owens introduced the concept of a system of systems in a 1996 paper, defining it

as the serendipitous evolution of a system of intelligence sensors, command and control systems,
and precision weapons that enabled enhanced situational awareness, rapid target assessment,
and distributed weapon assignment [Owens 1996]. The term system of systems is now used in a
variety of settings, beyond those in the original definition.

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/7-COTS-BasedSystems131205.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 217
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

2. Influence is more important than control in achieving collaboration among system-of-sys-
tems stakeholders, as a single point of control over the various individual systems is not
practical.

In communicating principles and issues, the SEI also raised awareness of the complexity of the
problem—however simply solutions could be depicted on paper, they were not simple to imple-
ment [Brownsword 2004, Fisher 2006, 2007]. While the principles helped to characterize the key
differences of systems of systems, they were not sufficient to determine needed governance, ac-
quisition, and engineering practices. In concert, the SEI leveraged insights from Boxer’s “Double
Challenge” of relating who must collaborate in the SoS effort with what each must provide [An-
derson 2007]. With increased complexity in the number
and interactions of the enterprises that must collaborate,
along with the need for solutions that address dynami-
cally changing operational needs—which often occur in
unanticipated ways—traditional governance and engi-
neering practices alone were no longer viable.

For the governance and acquisition aspect, the SEI
looked at the relationships and the influence and reward
structures in SoS collaborations, ensuring relevant stake-
holder participation in decision-making and providing
guidance on SoS acquisition and evolution. SEI experts
developed approaches such as SoS Navigator [Boxer
2008]. Navigator takes a social-technical view of sys-
tems of systems, addressing technical, business, and
people aspects, particularly in dynamic demand environ-
ments. It enables leaders to address critical aspects of
their organizations’ demand and supply sides and decide
whether to adopt a different business model. The Navi-
gator approach offers tools and techniques, such as Crit-
ical Context Analysis (originally called Collaboration
Stakeholder Analysis), and identifies key implications to
processes, interoperability, engineering, and collabora-
tion.

On the engineering side, the SEI developed lifecycle
guidelines and tutorials [Lewis 2008a, 2008b; Smith
2008] for engineering practices such as requirements en-
gineering, testing, maintenance, and evolution. To gain
experience with engineering techniques where capabili-
ties are under the control of different organizations, the
SEI leveraged its research with service-oriented archi-
tecture, an architectural style defined by the OASIS Reference Model as “a paradigm for organiz-
ing and utilizing distributed capabilities that may be under the control of different ownership do-
mains” [OASIS 2006]. SEI SoS engineering techniques include SMART (SOA Migration,

The View from Others

The SEI team gave us a new way
to look at the breadth of the sys-
tem-of-systems environment, and
we now understand why it is so
hard.

– Attendees of the SEI’s
National Defense Industrial
Association tutorial [Garcia-
Miller 2009]

Based on the engineering principle
of loose coupling, SOAs manage
software system interactions using
standardized interfaces. Using a
services-oriented approach helps
move from a set of interlocked,
point-to-point interfaces to more
effective means of interoperability
and data sharing… We expect
SMART to help us conduct the kind
of rigorous analysis that allows us
to make the best decisions.

– Dr. Tim Rudolph, Chief
Technology Officer, U.S.
Air Force Electronic
Systems Center
[Paone 2009]

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 218
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Adoption, and Reuse Technique), which is a family of techniques56 that helps organizations mi-
grating legacy applications to a service-oriented architecture by making better decisions about
SOA adoption [SEI 2013, Lewis 2008b].

 The Consequence: Well-Informed Decisions Using Tools and Techniques

The SEI has provided to the DoD and defense contractors tools and techniques for making well-
informed decisions about systems of systems based on data, both quantitative and qualitative.
They are better able to integrate additional, separately developed systems into their systems of
systems, even with incomplete technical, operational, and business information. They are aware
that, for systems of systems, the organizational impact is an essential element of system design
and deployment. They are aware that their acquisition approach must mirror a realistic view of
software and systems engineering when interoperability is a high priority. They have principles
and techniques for determining the feasibility of and building a plan for moving to a system-of-
systems environment. They have the additional benefit of SEI case studies that illustrate, for ex-
ample, decisions by government organizations on the interoperability of systems and whether leg-
acy systems can be migrated to a SOA environment.

 The SEI Contribution

The SEI has provided unbiased guidance and techniques to aid the successful engineering, gov-
erning, and acquisition of systems of systems. In addition, the SEI developed case studies and
training courses. It applied its research findings to real-world situations through engagements with
customers. Those experiences and collaborations with other researchers enabled SEI experts to
develop, pilot, mature, and make available system-of-systems tools and methods for migrating
new and legacy systems to system-of-systems environments and for evaluating the effectiveness
of systems interoperability technologies. The SEI SoS work influenced products that were spon-
sored by the Office of the Secretary of Defense [OSD 2008]. The early SEI work on SoS princi-
ples and concepts included defining characteristics of a system of systems. Here the SEI adapted
work by Maier [Maier 1998] and others, such as White [White 2005].

 References

[Anderson 2007] Anderson, Bill; Boxer, Philip J.; Morris, Edwin J.; & Smith, Dennis B. “The
Double Challenge in Engineering Complex Systems of Systems.” News at SEI. Software Engi-
neering Institute, Carnegie Mellon University, 2007. http://www.sei.cmu.edu/library/ab-
stracts/news-at-sei/eyeonintegration200705.cfm

[Boxer 2008] Boxer, Philip; Carney, David; Garcia-Miller, Suzanne; Brownsword, Lisa; Ander-
son, William; Kirwan, Patrick; Smith, Dennis; & Morley, John. SoS Navigator 2.0: A Context-
Based Approach to System-of-Systems Challenges (CMU/SEI-2008-TN-001). Software Engineer-
ing Institute, Carnegie Mellon University, 2008. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=8515

60 See http://www.sei.cmu.edu/architecture/tools/smart/index.cfm and [Lewis 2008b] for descriptions.

http://www.sei.cmu.edu/library/ab-stracts/news-at-sei/eyeonintegration200705.cfm
http://www.sei.cmu.edu/library/ab-stracts/news-at-sei/eyeonintegration200705.cfm
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8515
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8515
http://www.sei.cmu.edu/architecture/tools/smart/index.cfm

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 219
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Brownsword 2004] Brownsword, Lisa; Carney, David; Fisher, David; Lewis, Grace; Morris, Ed-
win; Place, Patrick; Smith, James; Wrage, Lutz; & Meyers, B. Current Perspectives on Interoper-
ability (CMU/SEI-2004-TR-009). Software Engineering Institute, Carnegie Mellon University,
2004. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7109

[Fisher 2006] Fisher, David. An Emergent Perspective on Interoperation in Systems of Systems
(CMU/SEI-2006-TR-003). Software Engineering Institute, Carnegie Mellon University, 2006.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8061

[Fisher 2007] Fisher, David; Meyers, B.; & Place, Patrick. Conditions for Achieving Network-
Centric Operations in Systems of Systems (CMU/SEI-2007-TN-003). Software Engineering Insti-
tute, Carnegie Mellon University, 2007. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=8207

[Garcia-Miller 2009] Garcia-Miller, Suzanne; Brownsword, Lisa; & Kirwan, Patrick. “Organiza-
tional Implications of Systems of Systems” (tutorial). National Defense Industrial Association
(NDIA) October 2009. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=21548

[Lewis 2008a] Lewis, G.; Morris, E.; Place, P.; Simanta, S.; Smith D.; & Wrage, L. “Tutorial: En-
gineering Systems of Systems.” Proceedings of the Seventh International Conference on Compo-
sition-Based Software Systems (ICCBSS). Madrid, Spain, February 25–29, 2008. IEEE Computer
Society, 2008.

[Lewis 2008b] Lewis, Grace; Morris, Edwin; Smith, Dennis; & Simanta, Soumya. SMART: Ana-
lyzing the Reuse Potential of Legacy Components in a Service-Oriented Architecture Environment
(CMU/SEI-2008-TN-008). Software Engineering Institute, Carnegie Mellon University, 2008.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8571

[Maier 1998] Maier, Mark W. “Architecting Principles for Systems-of-Systems.” Systems Engi-
neering 1, 4 (1998): 267-284. John Wiley & Sons, 1998. http://onlineli-
brary.wiley.com/doi/10.1002/%28SICI%291520-6858%281998%291:4%3C267::AID-
SYS3%3E3.0.CO;2-D/abstract

[OASIS 2006] OASIS. Reference Model for Service-Oriented Architecture1.0. (OASIS Standard).
OASIS, 2006. http://docs.oasis-open.org/soa-rm/v1.0

[OSD 2008] Office of the Deputy Under Secretary of Defense for Acquisition and Technology,
Systems and Software Engineering. Systems Engineering Guide for Systems of Systems, Version
1.0. ODUSD(A&T)SSE, 2008. http://www.acq.osd.mil/se/docs/SE-Guide-for-SoS.pdf

[Owens 1996] Owens, William A. The Emerging U.S. System-of-Systems, Institute for National
Strategic Studies, National Defense University (Strategic Forum 63), 1996.
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA394313

[Paone 2009] Paone, Chuck. “ESC Enters Pioneering Agreement with Software Engineering Insti-
tute.” Electronic Systems Center, Hanscom Air Force Base, 2009. http://www.hans-
com.af.mil/news/story.asp?id=123136939

[SEI 2013] “SOA Migration, Adoption, and Reuse Technique (SMART) Materials.” Software En-
gineering Institute, 2013. http://www.sei.cmu.edu/architecture/tools/smart/index.cfm

http://www.acq.osd.mil/se/docs/SE-Guide-for-SoS.pdf
http://www.hanscom.af.mil/news/story.asp?id=123136939
http://www.hanscom.af.mil/news/story.asp?id=123136939
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7109
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8061
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=8207
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=8207
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=21548
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8571
http://onlineli-brary.wiley.com/doi/10.1002/%28SICI%291520-6858%281998%291:4%3C267::AID-SYS3%3E3.0.CO
http://onlineli-brary.wiley.com/doi/10.1002/%28SICI%291520-6858%281998%291:4%3C267::AID-SYS3%3E3.0.CO
http://onlineli-brary.wiley.com/doi/10.1002/%28SICI%291520-6858%281998%291:4%3C267::AID-SYS3%3E3.0.CO
http://docs.oasis-open.org/soa-rm/v1.0
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA394313

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 220
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Smith 2008] Smith, D. & Lewis, G. “Systems of Systems: New Challenges for Maintenance and
Evolution,” 149-157. Proceedings of the 2008 Frontiers of Software Maintenance (art. no.
4659258), IEEE International Conference of Software Maintenance, FoSM Program. Beijing,
China, October 2008. IEEE/FoSM, 2008.

[White 2005] White, B. E. “A Complementary Approach to Enterprise Systems Engineering.”
NDIA Systems Engineering Conference. San Diego, CA, October 24–27, 2005. The MITRE
Corp., 2005. http://www.dtic.mil/ndia/2005systems/wednesday/white.pdf

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 221
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Developing Systems with Commercial Off-the-Shelf Products

 The Challenge: Using Commercial Off-the-Shelf Products in Defense
Systems

Incorporating commercial components57 into new systems has long been an effective means to
save time and money in building large software systems. In 1986, the Packard Commission urged
the DoD to “develop new or custom-made items only when it has been established that those
readily available are clearly inadequate to meet military requirements” [Packard 1986]. In 1994,
the DoD was similarly urged to use commercial off-the-shelf (COTS) products by a Defense Sci-
ence Board Report, Acquiring Defense Software Commercially [DSB 1994]. There was early DoD
concern about how COTS products could meet the rigid military security and performance re-
quirements, and the DoD took initial steps toward the use of these products by establishing sev-
eral initiatives. For example, the Navy conducted the NGCR program to identify interface stand-
ards for operating systems, networks, and several other areas as a step toward open systems,
which, in turn, encouraged the development and use of COTS products.

At that time, there was substantial movement toward using COTS operating systems, but intro-
ducing the use of COTS products at the level described above proved to be challenging—and was
accompanied by an increase in program failures. The increased use of COTS products meant that
developers lost design control, which was now influenced by market forces. Competitive pres-
sures in the software marketplace motivated vendors to innovate and differentiate features rather
than to stabilize and standardize, making component integration difficult and increasing design
complexity. Knowledge obtained about one commercial software component did not translate eas-
ily from one vendor to another and tended to degrade quickly as the products evolved through
new releases. Because integrating COTS products proved to be a delicate and difficult task, spe-
cific engineering practices were needed to accomplish that task successfully [Wallnau 2001].

 A Solution: Tools and Guidance for Improved Use of COTS Products

When the significant need in the COTS area became apparent, the SEI was poised to provide
much-needed expertise. The SEI’s CASE (computer-aided software engineering) Environments
work provided a strong foundation, and the SEI staff had a breadth of related experience that
could be brought to bear. In 1997, the COTS-Based Systems (CBS) initiative was created. In a
typical SEI approach, the initiative developed basic principles as a foundation, and developed pro-
cesses, tools, and methods for acquiring, engineering, and managing COTS-based systems. The
SEI emphasized the convergence in four spheres needed for success: stakeholder needs and busi-
ness processes; system architecture and design; the marketplace; and management processes, con-
cerns, and constraints that govern the development of the system, including risk management. The
keys to success from this perspective are iterative negotiation and knowledge building among
these spheres, improving the basis for making decisions. The SEI worked directly with several
government programs (for example, the Business Information System Program Office, Electronic

57 Examples of commercial components range from platform-level (such as HTTP servers and trans-

action monitors) to general purpose (such as web browsers and relational database management
systems) to domain specific (such as tax preparation packages, geographic information systems,
and biometric identity products).

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/3-CASE%20131205.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 222
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Systems Command, and the Joint Engineering Data Management Information and Control Sys-
tem—JEDMICS), thereby helping them while refining its body of knowledge, processes, and
tools. The resulting, government-oriented body of knowledge was reflected in training courses,
technical reports, journal articles, presentations, and the coaching and advice the SEI brought to
its customers.

Some of the more significant results are the following. The CBS Activity Framework
[Brownsword 2000] guides program managers in activities and practices that are essential for de-
veloping and supporting COTS-based systems. The SEI also gives acquisition managers and pol-
icy makers a basic understanding of how developing systems with COTS products is different and
of capabilities that can assist them [Brownsword 1998]. The Evolutionary Process for Integrating
COTS-Based Systems (EPIC) [Albert 2002a, 2002b] redefines acquisition, management, and en-
gineering practices to more effectively take advantage of the COTS marketplace and other sources
of pre-existing components. To reduce the number of program failures attributable to COTS, the
SEI developed the COTS Usage Risk Evaluation (CURE) and an Assembly Process for COTS-
Based Systems (APCS), a process framework for developing software systems based on COTS
products [Carney 2003]. The framework is based on Barry Boehm’s familiar spiral development
process [Boehm 1986]. In a cooperative effort, the SEI and National Research Council, Canada
defined a process for evaluating COTS software products, called PECA (which stands for Plan
evaluation, Establish criteria, Collect data, Analyze results) [Comella-Dorda 2004]. Because of
the expanding role of CMMI across the SEI customer base, the SEI produced an interpretation of
CMMI for COTS-based systems [Tyson 2003]. This interpretation solidified the basis of EPIC
and related work by confirming that, although one could modify the process to suit one’s needs,
the principles could not be modified or ignored.

An outgrowth of the SEI work in COTS-based systems was an investigation into whether it is
possible to combine pieces of software that had been written by different parties in a way that
would allow their runtime behaviors to be predictable with some measure of certifiability. The
SEI’s “predictable assembly from certifiable components” (PACC) work [Wallnau 2003] grew
from the growing understanding of how the underlying architecture was essential to the effective
use of COTS products. (See also the Architecture section.)

 The Consequence: Effective Use of COTS Products

There has been a great deal of evolution in the last 15 years regarding the use of COTS products.
Conversations about data rights and business models in connection with engineering and acquisi-
tion of systems are now routine. Processes and techniques have matured and evolved. Books cov-
ering the area have been published [Meyers 2001, Hissam 2001]. There was international partici-
pation in the International Conference on COTS-Based Software Systems (ICCBSS) for seven
years, and papers delivered there are regularly cited in other publications. Rational/IBM saw the
value in using EPIC as the basis for a plug-in for COTS package delivery [IBM 2010]. A supple-
ment to Rational Method Composer 7.5, it is a guide for evaluating, recommending, acquiring, in-
stalling, configuring, fielding, and evolving COTS package solutions.

https://collaboration.sei.cmu.edu/sites/ManagementChapter/ManagementChapter/7-CMMI%20140103.docx
https://collaboration.sei.cmu.edu/sites/ArchitectureChapter-Done-ckd-12-04-13/ArchitectureChapter

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 223
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 The SEI Contribution

When the SEI started investigating COTS-based systems, there was no other resource to which
the federal government—most particularly, the DoD—could turn for guidance on achieving suc-
cess with the use of COTS products. The SEI’s influence extended beyond the Army, Navy, and
Air Force, although courses were taught to all three. Other government organizations include the
GAO, the Department of Justice, and the Department of Commerce.

The SEI developed a COTS-based systems body of knowledge based on broad experience.
Through its CBS work, the SEI developed basic principles, techniques, and tools. SEI experts
published guidance, presented tutorials at conferences, and provided training. It related CBS work
to the CMMI, the Earned Value Method (EVM), Rational’s RUP, and the spiral development
method defined by Boehm. It used the International Standards Organization standard for software
product evaluations [ISO/IEC 1998] as a starting place for developing the PECA process. The SEI
also partnered with two other organizations to plan and lead the International Conference on
COTS-Based Software Systems, held 2002-2008 (later renamed the International Conference on
Component-Based Software Systems). The SEI’s partners were the National Research Council,
Canada (Ottawa, Canada) and the European Software Institute (Bilbao, Spain). This conference
series attracted CBS researchers and practitioners from around the world and yielded a significant
contribution to the CBS literature.

The value of this SEI work to the community is illustrated by the decision of Rational (now IBM)
to use EPIC as the basis for a COTS plug-in for its tool suite called the RUP Plug-In for COTS
Package Delivery [IBM 2010]. Also, Mälardalen University in Sweden held an annual workshop
on component-based software engineering, and the SEI was involved in active working groups
that developed from those workshops. The university created an ongoing research group based on
interactions of the SEI with Professor Ivica Crnkovic, author of Building Reliable Component-
Based Software Systems [Crnkovic 2002]. Finally, SEI work continues to be cited in journals and
papers; see, for example, articles by Kusomo and by VanLeer [Kusomo 2012, VanLeer 2013].

The COTS-based systems work is an excellent example of the SEI’s method of applied research,
taking what is known about a subject, improving and enhancing it through research, and then
packaging that in forms that meet the needs of government and industry customers.

 References

[Albert 2002a] Albert, Cecilia & Brownsword, Lisa. Evolutionary Process for Integrating COTS-
Based Systems (EPIC): An Overview (CMU/SEI-2002-TR-009). Software Engineering Institute,
Carnegie Mellon University, 2002. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=6093

[Albert 2002b] Albert, Cecilia; Brownsword, Lisa; Bentley, David; Bono, Thomas; Morris, Ed-
win; & Pruitt, Deborah. Evolutionary Process for Integrating COTS-Based Systems (EPIC) Build-
ing, Fielding, and Supporting Commercial-off-the-Shelf (COTS) Based Solutions (CMU/SEI-
2002-TR-005). Software Engineering Institute, Carnegie Mellon University, 2002. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=6053

[Boehm 1986] Boehm B. “A Spiral Model of Software Development and Enhancement.” ACM
SIGSOFT Software Engineering Notes 11, 4 (August 1986):14-24.

http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=6093
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=6093
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=6053
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=6053

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 224
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Brownsword 1998] Brownsword, L.; Carney, D.; & Oberndorf, P. “The Opportunities and Com-
plexities of Applying Commercial-Off-the-Shelf Components.” CrossTalk: The Journal of De-
fense Software Engineering 11, 4 (April 1998): 4-6.

[Brownsword 2000] Brownsword, Lisa; Sledge, Carol; & Oberndorf, Patricia. An Activity Frame-
work for COTS-Based Systems (CMU/SEI-2000-TR-010). Software Engineering Institute, Carne-
gie Mellon University, 2000. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5225

[Carney 2003] Carney, David; Morris, Edwin; & Place, Patrick. Identifying Commercial Off-the-
Shelf (COTS) Product Risks: The COTS Usage Risk Evaluation (CMU/SEI-2003-TR-023). Soft-
ware Engineering Institute, Carnegie Mellon University, 2003. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?AssetID=6767

[Comella-Dorda 2004] Comella-Dorda, Santiago; Dean, John; Lewis, Grace; Morris, Edwin; &
Oberndorf, Patricia. A Process for COTS Software Product Evaluation (CMU/SEI-2003-TR-017).
Software Engineering Institute, Carnegie Mellon University, 2004. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?AssetID=6701

[Crnkovic 2002] Crnkovic, Ivica & Larsson, Magnus. Building Reliable Component-Based Soft-
ware Systems. Artech House, 2002 (ISBN 1580533272).

[DSB 1994] Defense Science Board Task Force (Larry Druffel & George H. Heilmeier, co-
chairs). Acquiring Defense Software Commercially. (Report #859), June 1994.
http://www.dod.mil/pubs/foi/logistics_material_readiness/acq_bud_fin/859.pdf

[Hissam 2001] Hissam, Scott; Seacord, Robert C.; & Wallnau, Kurt C. Building Systems from
Commercial Products. Addison-Wesley, 2001 (ISBN-10: 0-201-70064-6, ISBN-13: 978-0-201-
70064-0).

[IBM 2010] IBM. Rational Unified Process® (RUP®) Plug-ins for Rational Method Composer
7.5. IBM 2010. http://www-01.ibm.com/support/docview.wss?uid=swg24028579.

[ISO/IEC 1998] ISO/IEC. Software Product Evaluation, Part 5: Process for Evaluators (ISO/IEC
14598-5:1998). ISO/IEC, 1998.
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=24906

[Kusumo 2012] Kusumo, D. S.; Staples, M.; Zhu, L.; Zhang, H.; & Jeffery, R. “Risks of Off-the-
Shelf-Based Software Acquisition and Development: A Systematic Study and a Survey.” IET
Seminar Digest 2012, 1: 233-242.

[Meyers 2001] Meyers, B. Craig & Oberndorf, Patricia. Managing Software Acquisition: Open
Systems and COTS Products. Addison-Wesley, 2001 (ISBN 0-201-70454-4).

[Packard 1986] Packard Commission (David Packard, Chairman). A Quest for Excellence; Final
Report to the President by the President’s Blue Ribbon Commission on Defense Management,
June 1986. http://web.amsaa.army.mil/Documents/Packard%20Commission%20Report.pdf

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6701
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6701
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5225
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=6767
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=6767
http://www.dod.mil/pubs/foi/logistics_material_readiness/acq_bud_fin/859.pdf
http://www-01.ibm.com/support/docview.wss?uid=swg24028579
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=24906

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 225
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Tyson 2003] Tyson, Barbara; Alberts, Christopher; & Brownsword, Lisa. Interpreting Capability
Maturity Mode Integration (CMMI) for COTS-Based Systems (CMU/SEI-2003-TR-022). Soft-
ware Engineering Institute, Carnegie Mellon University, 2003. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?AssetID=6759

[VanLeer 2013] VanLeer, M. D. & Jain, R. “A Framework to Assess the Impact of Systems of
Systems Integration Using Commercially Off the Shelf (COTS) Technology.” Journal of Systems
of Systems Engineering 4, 1 (2013): 23-43.

[Wallnau 2001] Wallnau, Kurt; Hissam, Scott; & Seacord, Robert. Building Systems from Com-
mercial Components. Addison-Wesley, 2001 (ISBN 0-201-70064-6).

[Wallnau 2003] Wallnau, Kurt. Volume III: A Technology for Predictable Assembly from Certifia-
ble Components (CMU/SEI-2003-TR-009). Software Engineering Institute, Carnegie Mellon Uni-
versity, 2003. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=6633

http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=6759
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=6759

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 226
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Assurance Cases

 The Challenge: Confidence in the Behavior of Performance-Critical
Systems

A concern surrounding DoD systems was the need to shorten the certification process for safety,
system reliability, or security. Traditional software and systems engineering techniques, including
conventional test and evaluation approaches, were unable to provide the justified confidence
needed. Consequently, a methodology to augment testing and evaluation was needed. The DoD
needed to identify which parts are most important and which are less important, thereby enabling
a more economically justified allocation of resources to the important points and issues. When a
system had to be recertified because of a change to the system, the DoD needed to determine what
must be changed, saving costly rework.

 A Solution: Assurance Cases

The SEI had long experience in areas related to the DoD certification needs. SEI work in rate
monotonic analysis (RMA) and in Simplex led to a more general interest in performance-critical
systems, which became an area of concentration for the SEI in the mid-1990s. The SEI’s investi-
gation of performance-critical systems broadened the focus beyond real time, which had been the
focus of RMA. The Simplex architecture allowed for improvements in performance without sacri-
ficing the need to assure safety. Simplex provided a highly reliable core with higher performance
code around this core area. If the higher performance code began to misbehave in some way, the
system would automatically revert to the core, thereby providing higher performance when possi-
ble along with the assurance of safety in all situations. SEI work in dependable systems upgrades
[Gluch 1997, 1998] was intended to extend this basic Simplex idea to a formal analysis of require-
ments and an effort to guarantee particular quality attributes.

Around the same time, the SEI became interested in fault-tolerant computing as it applied to soft-
ware. SEI staff members developed a conceptual framework [Heimerdinger 1992], organized and
hosted a series of dependable-software technology exchanges [Weinstock1993], and worked with
the National Institute of Standards and Technology (NIST) to establish a Center for High Integrity
System Software Assurance. As the SEI investigated performance-critical systems, and as systems
of systems became more prevalent, the difficulty of assuring the safety, security, or reliability of
net-centric systems of systems became clear—because of their size, complexity, and continuing
evolution, and because they can exhibit undesired and unanticipated emergent behavior (actions
of a system as a whole that are not simple combinations of the actions of the individual constitu-
ents of the system).

In considering the DoD certification problem, SEI experts focused on assurance cases. An assur-
ance case provides a means to structure the reasoning that engineers use implicitly to gain confi-
dence that systems will work as expected. It also becomes a key element in the documentation of
the system and provides a map to more detailed information.

The concept of an assurance case was derived from the safety case, a construct that had been used
successfully in Europe for more than a decade to document safety for nuclear power plants, trans-
portation systems, automotive systems, and avionics systems. Much like a legal case presented in
a courtroom, an assurance case requires arguments linking evidence with claims of conformance
to the requirements of interest. It includes (1) a claim embodying what we want to show (e.g., the

https://collaboration.sei.cmu.edu/sites/EmbeddedReal-Time%20and%20CyberPhysical-DONE-12-03-13/Embedded%20Real-TimeandCyberPhysical-updated12-3-13/5-Rate%20Monotonic%20Analysis%20131203.docx
https://collaboration.sei.cmu.edu/sites/EmbeddedReal-Time%20and%20CyberPhysical-DONE-12-03-13/Embedded%20Real-TimeandCyberPhysical-updated12-3-13/5-Rate%20Monotonic%20Analysis%20131203.docx
https://collaboration.sei.cmu.edu/sites/EmbeddedReal-Time%20and%20CyberPhysical-DONE-12-03-13/Embedded%20Real-TimeandCyberPhysical-updated12-3-13/6-Simplex%20Architecure%20131203.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/6-Interop-System%20of%20Systems131205.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/6-Interop-System%20of%20Systems131205.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 227
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

system is safe); (2) evidence supporting the claim (e.g., a hazard analysis)—evidence can take on
many forms, including test results, formal analyses, simulation results, fault-tree analyses, hazard
analyses, modeling, and inspections, and (3) an argument explaining how the evidence is linked to
the claim.

It is important that an assurance case be reviewable, which means that having a single claim (“The
system does what it’s supposed to do”) and a single complex argument that links myriad evidence
to the claim are not appropriate. Instead of taking such a large step, the claim is typically broken
into subclaims, each of which can potentially be broken into yet another level of subclaims until
the step to the actual evidence that supports that subclaim is almost obvious.

SEI work in assurance cases was initially funded by the NASA High Dependability Computing
Project, beginning in 2002. On that project, the SEI worked with researchers at Carnegie Mellon
University to introduce advanced thinking into NASA for use with various space projects, includ-
ing the Mars Lander and the NASA Mission Data System (MDS), which had an unusual architec-
ture that raised concerns about reliability. The SEI adapted ideas presented in a PhD thesis by
Kelly at the University of York [Kelly 1998].

 The Consequence: Assurance Cases Used in Practice

Application of assurance cases for certification has not been fully implemented yet, but it is an
idea that many are considering and discussing. For example, NASA developed, with SEI assis-
tance, an assurance case practice. For its Constellation project, the SEI contributed to NASA’s
safety requirements document, which specified the use of an assurance case to demonstrate safety.
Although the assurance case requirement did not survive final review by NASA and its contrac-
tors, and the Constellation project subsequently was cancelled, the idea of assurance cases was
distributed within NASA, leading to some research projects on assurance cases that continue to
this day.

In 2006 the SEI was approached by the U.S. Food and Drug Administration (FDA). As a result of
a number of safety incidents with infusion pumps, the FDA wished to improve the thoroughness
of its review process and to improve the engineering done by manufacturers to assure safety. SEI
work on the use of assurance cases in the development of medical devices [Weinstock 2009] led
directly to the FDA’s issuing draft guidance to manufacturers recommending the use of assurance
cases and providing guidance for their use. As a result, infusion pump manufacturers are begin-
ning to make use of assurance cases. The FDA is the only official agency of the U.S. government
that has formally mandated the use of assurance cases to date.

 The SEI Contribution

The idea that a structured argument is better than an unstructured argument is prevalent in Great
Britain, where the Ministry of Defense (MoD) has for a decade or more required that an assur-
ance-case kind of structure be presented for certain types of MoD systems. Subsequent to the start
of the SEI’s work in this area, the importance of assurance case concepts was recognized by the
National Research Council in its report “Software for Dependable Systems: Sufficient Evidence?”
[Jackson 2007].

The SEI has been instrumental in developing the assurance case from the existing European safety
case concept, and showing how the cases can be used in various areas, such as aerospace and

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 228
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

medical devices. It is helping to create what could eventually become a routine practice of using
assurance cases throughout the lifecycle to provide justified confidence that a system will perform
as intended. Additionally, the SEI is developing a theory of argumentation that shows promise in
helping to understand the contribution of specific evidence to system claims. The SEI has also ap-
plied assurance cases to claims about security and co-organized several workshops on that sub-
ject.

Work on assurance cases continues and is focused on creating a theory of argumentation that can
be used to reason about the amount of confidence in a claim that is provided by particular pieces
of evidence. The expectation is that this will lead to the ability to determine how to more effec-
tively use scarce assurance resources. The theory is borrowing and extending concepts from law,
philosophy, artificial intelligence, and other relevant disciplines.

 References

[Gluch 1997] Gluch, David & Weinstock, Charles. Workshop on the State of the Practice in De-
pendably Upgrading Critical Systems (CMU/SEI-97-SR-014). Software Engineering Institute,
Carnegie Mellon University, 1997. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=12775

[Gluch 1998] Gluch, David & Weinstock, Charles. Model-Based Verification: A Technology for
Dependable System Upgrade (CMU/SEI-98-TR-009). Software Engineering Institute, Carnegie
Mellon University, 1998. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=13105

[Heimerdinger 1992] Heimerdinger, Walter & Weinstock, Charles. A Conceptual Framework for
System Fault Tolerance (CMU/SEI-92-TR-033). Software Engineering Institute, Carnegie Mellon
University, 1992. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11747

[Jackson 2007] Jackson, Daniel; Thomas, Martyns; & Millet, Lynn. Software for Dependable Sys-
tems: Sufficient Evidence? The National Academies Press, 2007 (ISBN 0309103940).

[Kelly 1998] Kelly, Timothy P. Arguing Safety–A Systematic Approach to Managing Safety
Cases. PhD thesis. University of York, 1998. http://www.sei.cmu.edu/dependability/tools/assur-
ancecase/upload/ArguingSafetyCases.pdf

[Weinstock 1993] Weinstock, Charles & Schneider, Fred. Dependable Software Technology Ex-
change (CMU/SEI-93-SR-004). Software Engineering Institute, Carnegie Mellon University,
1993. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=11785

[Weinstock 2009] Weinstock, Charles & Goodenough, John. Towards an Assurance Case Prac-
tice for Medical Devices (CMU/SEI-2009-TN-018). Software Engineering Institute, Carnegie
Mellon University, 2009. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8999

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8999
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=12775
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=12775
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=13105
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11747
http://www.sei.cmu.edu/dependability/tools/assur-ancecase/upload/ArguingSafetyCases.pdf
http://www.sei.cmu.edu/dependability/tools/assur-ancecase/upload/ArguingSafetyCases.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=11785

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 229
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

7 Architecture

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 230
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 231
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Figure 7: Architecture Timeline

To Present

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999
2000

2001

2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

B-2 Sim

SW Architecture
FAA Study

with LL

Serpent

Architecture Tradeoff Analysis

DURRA

Quality Attributes

Ada Env. Eval

COTS-Based Systems

Component-Based Systems

PACC

Domain Analysis

SR: Software
Architecture for
Executives

Book: Software
Architecture and
Practice

AF Flight Simulator

B-2 Simulator

FODA

CASE

ACE

Architecture Tradeoff Analysis Method (ATAM)

Assurance Cases

ATAM and QAW pilots

Quality Attribute Workshop (QAW)

QAW report

SW Architect
Mandate

Army Strategic Software Improvement Program

[Architecture Research
and Practices]

System ATAM

Book:
Evaluating
SW Arch.

Book: Views
and Beyond:
Documenting
SW Arch.

Book:
Practitioner’s
Guide for Real-
Time Analysis

CBAM

SATURN Conference

Dali

SAAM

ICSE

SW Eval.
Workshop

Duration?

WICSA

Architecture Documentation Duration?

ARMINDuration?

Architecture Reconstruction

Duration?

To present?

To Present

SW Arch Tech

ArchE

To Present

ADD

To Present

ProductNavy/Air Force activity

Non-SEI activity

Other Federal Org activity

Army activity
outside

influence

SEI activity

Delivered

Influenced

Product Suite

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 232
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 233
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Introduction to Software Architecture

At the time the SEI was established, there was little discussion of software architecture. Although
there was a general recognition that the structure of software was important, that structure was of-
ten not visible or even documented. Indeed, structure could be many things—it was often an arti-
fact of the methodology used for decomposition, or sometimes even a consequence of the way the
system was decomposed for management across organizations, or the way the system modules
were collected for execution on different processors.

This important asset was typically not controlled or maintained. Even when the structure was ex-
plicit, that structure was often violated inadvertently during evolution and almost always during
maintenance. This was particularly true of real-time systems because they were mostly written in
assembly language and the structure could be easily violated unintentionally.

Indeed, for most applications, there was little analysis of the best structure, except perhaps for au-
tomatic data processing (ADP) systems. Because of their large-database orientation, ADP systems
began to evolve similar structures and methodologies appropriate to those applications that en-
couraged such consistency [Freeman 1982]. A few other applications were studied in great detail,
most notably compilers. By the early 1980s, the structure of a compiler was so highly refined that
researchers began developing tools to generate compilers [Johnson 1978]. But even in that highly
developed area, the term architecture was seldom, if ever, used. Other well-studied applications
that incorporated architectural principles, while not necessarily using the term, included relational
database systems and operating systems.

Although there was little discussion of software architecture, there was significant discussion in
the software engineering community on reuse of software components. There was also a growing
recognition that effective reuse required consistent decisions or assumptions about the structure
into which the components would be integrated. There were two DARPA programs addressing
various aspects of software architecture with which the SEI collaborated, namely Software Tech-
nology for Adaptable, Reliable Systems (STARS) and Domain Specific Software Architectures
(DSSA).

 Seemingly Independent Efforts Prepared the SEI for an Early Consideration
of Software Architecture

Several independent SEI efforts in the mid to late 1980s prepared the SEI for an early entry into a
focus on software architecture. These included a structured modeling approach to building aircraft
simulators, evaluation of the in-flight software system under development by the Federal Aviation
Administration, and development of a generalized user interface management system. In parallel,
there was a growing body of work elsewhere that influenced SEI thinking, including the DARPA
STARS program, the Air Force Systems Command/Electronic Systems Division (AFSC/ESC)
PRISM effort to define an architecture for command centers, and some commercial efforts.

The SEI was asked by the Air Force to evaluate perceived difficulties involving the application of
Ada to the B2 simulator. Working with the contractor, the SEI team realized that the problem was
not an Ada problem but that use of the more structured language made clear that the formerly ac-
ceptable approach violated modern software engineering principles. The SEI and the contractor
evolved an approach modeled after the physical structure being simulated (the aircraft in this

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 234
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

case). This structural modeling approach enabled developers to reduce complexity and facilitate
changeability. The SEI also developed a reference model and supporting tools. The benefits in-
cluded significant reductions in test problems (from 2,000–3,000 to 600–700), in staff require-
ments for installation, in test expense, in defects, and in side effects from software changes.

The U.S. Department of Transportation and the DoD asked the SEI to join Lincoln Laboratory in
conducting an independent technical assessment (ITA) of a problematic FAA upgrade of the in-
flight air traffic control system. This FAA study included three FAA members contributing in-
sights and documents. The team began to investigate the underlying software structure and con-
cluded that it was sound and the upgrade project could be salvaged. The team provided a 14-point
list of recommendations, which the FAA implemented. As a result, the contractor completed the
upgrade, which went smoothly [Brown 1995]. The system is in use today. This experience en-
couraged the SEI to begin thinking more deeply about software architecture.

Earlier, the SEI had embarked on the development of a user interface management system
(UIMS) intended to simplify the creation and modification of the user interface for interactive ap-
plications. Because the user interface is one of the most highly modified portions of most systems,
special attention was needed to support the modification of the user interface. The Serpent UIMS
consisted of a language for specifying the user interface, a compiler for that language, and a
runtime engine to support the execution of the language. It was based on the architectural princi-
ple of separating the user interface from the remainder of the system to allow for the user interface
to change without affecting any of the other code in the system. Again the notion of software ar-
chitecture had become evident.

Because Serpent was one of a number of competing UIMSs, the SEI developed a method for com-
paring alternative designs for UIMSs to achieve the same functionality. This method—the Soft-
ware Architecture Analysis Method (SAAM)—was useful in a more general context than the user
interface domain and was based on recognizing that different systems, even in the same domain,
may be created with different business goals. Business goals, such as length of use of the system,
time to market, and execution within particular environments, led to different design choices.
SAAM included a step in which these goals were explicitly stated so that design decisions could
be evaluated against the goals.

The SEI first presented the SAAM at the International Conference on Software Engineering
(ICSE) in 1994. The SAAM was based on the development and evaluation of scenarios for deter-
mining the ability to achieve defined business goals. Other methods in use at that time employed
checklists (AT&T) and surveys (Siemens). The SAAM was seminal in the use of scenarios to per-
form architecture evaluation. Another scenario-based method, 4+1 View [Krutchen 1995], was
developed concurrently at Rational. The SEI published a report for executives about software ar-
chitecture in 1996 [Clements 1996].

SAAM led directly to the Architecture Tradeoff Analysis Method (ATAM), which evaluated a
system for a collection of quality attributes (non-functional requirements) in addition to the modi-
fiability of the user interface. Quality attribute requirements, such as those for performance, secu-
rity, reliability, and usability, have a significant influence on the success of a system. The notion
of paying attention to quality attributes first emerged from SEI work on Durra, a task-level appli-

file://ad/dfs/users/lhp/Documents/History/2013consistency/EmbeddedReal-TimeChapter-done/Embedded%20Real-Time-done/7-Durra%20130925.doc

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 235
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

cation description language, in the late 1980s. A focus on quality attributes in the context of busi-
ness goals has been the consistent theme of the SEI’s subsequent contributions to the field of soft-
ware architecture.

The ATAM, which is in use today, is a method for evaluating software architectures relative to
quality attribute goals. Since its development, the ATAM has emerged as the leading method in
the area of software architecture evaluation. ATAM evaluations expose architectural risks that po-
tentially inhibit the achievement of an organization’s business goals. The ATAM got its name be-
cause it not only reveals how well an architecture satisfies particular quality goals, but it also pro-
vides insight into how those quality goals interact and trade off with each other.

 Emergence of Architecture as a Separate and Well-Defined Area

By 1996, software architecture was emerging as a separate and increasingly well-defined area of
interest within the field of software engineering. Two faculty members at Carnegie Mellon Uni-
versity published the first academic book on software architecture [Shaw 1996]. The SEI followed
with a practitioner-oriented book [Bass 1997], and Siemens also published a book on software ar-
chitecture during this time [Hofmeister 1999]. As interest in software architecture grew, the SEI
started the Working IEEE/IFIP (Institute of Electrical and Electronics Engineers/International
Federation for Information Processing) Conference on Software Architecture in San Antonio in
1999, providing a forum for the sharing of ideas and practices in the emerging field.

As the importance of software architecture became increasingly evident, the SEI began, in the late
1990s, to dedicate greater attention and resources to architecture-centric engineering. Results of
this strategic focus include the following:
• Architecture reconstruction, 1997. This activity acknowledged the value of discovering im-

plicit architectures through an examination of available evidence, with support from the SEI-
developed Dali architecture-reconstruction tool and later the ARMIN (Architecture Recon-
struction and MINing) tool, 2003. The SEI first applied architecture reconstruction in an en-
gagement with the National Reconnaissance Office in 1998 [Kazman 1997, 2001].

• Quality Attribute Workshop (QAW), 2001. The QAW identifies important quality attrib-
utes and clarifies system requirements before there is a software architecture to evaluate. The
SEI first began developing the concept of a QAW in work with the Deepwater Project for the
Coast Guard in 1993. The QAW was derived from the ATAM. However, in its original incar-
nation, the QAW was tightly entwined with government acquisition and acquisition cycles.
Understanding the utility of the technical core of the QAW, the SEI eventually developed a
context-free instrument and began to apply it. It was codified in 2003 [Barbacci 2003], and a
supporting toolkit was released in 2006.

• Cost-Benefit Analysis Method (CBAM), 2001. Another offshoot of the ATAM, the CBAM
is an architecture-centric method for analyzing the costs, benefits, and schedule implications
of architectural decisions [Kazman 2002].

• Views and Beyond approach for documenting a software architecture, 2001. In 2002, the
first edition of Documenting Software Architectures, an influential and frequently cited book
on the topic, was published in the SEI Series in Software Engineering by Addison-Wesley
[Clements 2002].

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 236
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

• ArchE (Architecture Expert), 2003. This is a tool for moving from a set of quality attribute
scenarios to an architecture design that satisfies those scenarios [Bachmann 2003].

• Attribute-Driven Design (ADD) Method, 2006. This is a method for designing the architec-
ture of a software-intensive system by basing the design process on the architecture’s quality
attribute requirements [Wojcik 2006].

• SEI Architecture Technology User Network (SATURN) Workshops, 2006. The initial
workshops, held in Pittsburgh, later evolved into the SATURN Conference series, an interna-
tional forum for software architecture practitioners.

• System ATAM, 2007. This variant of the ATAM addresses system architecture notions and
specifications, engineering considerations, quality attribute concerns, and architectural ap-
proaches.

 Introduction of the Notion of Software Product Lines and Associated
Practices

There had long been the expectation in the software community that software could be reused,
and research and industry teams made various attempts to develop the mechanics for such a strat-
egy, with varying levels of success. Predominantly, strategic reuse capitalizes on commonality—
common features—and manages variation.

By the 1980s, diverse areas such as automobiles, aircraft, machine tools and, more recently, com-
puter hardware, were using the concept of a product line, but the idea of a software product line
was not common practice. The SEI was influenced to begin its formal investigation into software
product lines by a number of related SEI experiences and by DoD and commercial attempts to cre-
ate software product lines in the late 1980s and early 1990s. The reference architecture that the
SEI developed for the B-2 simulator was later applied to other simulators, providing an early ex-
ample of the potential for product lines. The SEI was also participating in the DARPA STARS
program, which was experimenting with the development of software product lines, and in the
AFSC/ESD PRISM project to experiment with the definition of a product line approach to the de-
velopment of command centers. There were also a number of commercial industry efforts to de-
fine a software product line, most notably by CelsiusTech Systems AB.

The DARPA STARS program evolved from the effort that initially launched the SEI. The mission
of STARS was to “[p]rovide DoD the technological, management and transitional basis to influ-
ence and enable a paradigm shift to a process-driven, domain-specific reuse based approach to
software intensive systems” (from standard presentations about the program). Product lines and a
development lifecycle that focused on commonality and variability were part of the global objec-
tive of STARS. As part of the STARS program, domain-analysis techniques were defined, archi-
tecturally oriented reuse library tools were developed, and three demonstration projects were initi-
ated with the military services to pilot the tools and techniques. Successful application of tools
and techniques in the Army and Air Force demonstration projects validated the efficacy of a prod-
uct line approach but identified challenges to widespread adoption.

In 1991, the effort at AFSC/ESD called PRISM was motivated by two surveys that determined
that 67 percent of Air Force-fielded command centers had functionally equivalent characteristics,
while 75 percent of those fielded command centers had similar operational requirements.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 237
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

AFSC/ESD conducted a source selection to find contractors to develop a model generic com-
mand-center architecture and functional specifications with supporting tools. ESD awarded re-
search-and-development contracts to Raytheon and Hughes to build, test, and validate a “product
line” approach to systems development [Hughes 1991]. TRW was later added as a third contrac-
tor. Eight line programs used the PRISM model architecture and supporting tools to realize an es-
timated 56 percent average savings in cost and an average 66 percent savings in time. These eight
systems were early examples of software product lines.

At the time, the SEI was engaged in developing the Feature-Oriented Domain Analysis (FODA)
[Kang 1990] that analyzes a problem domain across multiple similar systems to identify common
and variable features. FODA serves as the basis for a vast number of subsequent feature modeling
approaches and dialects still in use today. At the SEI, FODA later evolved into product line analy-
sis, which extended the analysis of commonality and variability beyond features to quality attrib-
utes. The SEI investigation into product lines was also made possible by its concurrent focus on
software architecture. SEI contributions in architecture definition, documentation, and evaluation
were an important part of a software product line approach. Serendipitously, SEI staff members
traveled to Sweden to interview staff at CelsiusTech Systems AB, ostensibly to do an architecture
case study; what they found was that CelsiusTech had taken a product line approach that was
achieving significant results in ship systems built for national defense, a domain of interest to the
DoD. Those results included systems completed in days instead of years, order-of-magnitude
productivity gains, and mass customization where 20 software builds were parlayed into a family
of over a thousand specifically tailored systems. The promise of product lines that was docu-
mented in the CelsiusTech case study [Brownsword 1996] led the SEI to pursue an initiative in
software product lines. The SEI recognized that when developing multiple similar products, there
will be some degree to which they are the same, but there will also be some degree to which they
vary. Economic advantage is achieved through a systematic product line approach that effectively
manages this variation. Creating a software product line depends on establishing a software archi-
tecture, or product line architecture, for the entire set of systems.

 Broad Use of SEI Approaches to Software Architecture

The influence of SEI work in software architecture on the DoD has been broad and pervasive.
Major defense contractors, such as Boeing and Raytheon, now have architecture evaluation teams
and architecture evaluation as part of their architect certification processes. Also, U.S. Army staff
have reported repeatedly that use of scenario-based architecture evaluation methods reduces risk
in schedule and cost, improves documentation, and results in higher-quality products.

Moreover, in 2009, the U.S. Army mandated that all Project Executive Offices appoint a chief
software architect (CSWA) to be responsible for oversight and management of software develop-
ment within each PEO. The memo specified that the CSWA must earn a Software Architecture
Professional Certificate from the SEI (or another certificate-granting organization with software
architecture expertise). The decision was based on an understanding of SEI work in software ar-
chitecture and its impact and, in particular, a recent impact study of the use of SEI architecture
evaluation techniques in the Army [SEI 2009]. Also, the SEI conducted a study of the impact of
the Army Strategic Software Improvement Program (ASSIP)-sponsored QAWs and architecture
evaluations using the ATAM. Ten out of 11 programs that responded to the survey indicated that
ATAM/QAW produced better results than they traditionally obtained.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 238
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

A measure of the influence of SEI architecture methods and techniques is their incorporation into
a handbook for practitioners on the practice of architecting, written by an Open Group Master
Certified IT architect. The book, The Process of Software Architecting [Eeles 2010], advises prac-
titioners on the importance of quality attributes and refers the reader to SEI techniques and meth-
ods (including quality attribute scenarios, architectural tactics, ADD, and ATAM).

Finally, IBM researcher Olaf Zimmerman sent the following note to the SEI, lauding its influence
on the field of software architecture:

As briefly discussed at IMPACT, one cannot overestimate the importance of SEI assets have
had, and continue to have, for numerous practicing architects in companies around the
globe. This does not always become evident and tangible in public because most of these
people spend all of their time on their projects, shipping products and satisfying clients; only
few of them find the time to come to conferences or to become published authors. I can con-
firm this from my 10+ years in architectural roles in IBM professional services and develop-
ment.
The first two examples that come to my mind are:

• When I received my company-internal IT architectural thinking and method training
in the late 1990s, SEI books like “Software Architecture in Practice” were high up
on recommended reading lists compiled by the creators of our methods; concepts
like quality attributes of course play key roles in these methods.

• Several of the clients in the telecommunications and finance sectors I worked with
over the years look at the SEI not only for process advice and architectural educa-
tion, but view the SEI as a trusted, independent advisor that regularly publishes
high-quality reports on emerging concepts and technologies.

As previously demonstrated in other areas, the SEI does not need to be the first to enter an area of
investigation to be a leader in that area. The SEI contributions to architecture have been recog-
nized internationally. This sentiment is best characterized by Philippe Kruchten in a keynote ad-
dress at the Fourth Annual SEI SATURN Workshop held April 30–May 1, 2008 in Pittsburgh. He
said,

Over the last 15 years, the SEI has become a sort of mecca for software architecture—a
place where anyone who is doing any work related to software architecture must go.

 References

[Bachmann 2003] Bachmann, Felix; Bass, Len; & Klein, Mark. Preliminary Design of ArchE: A
Software Architecture Design Assistant (CMU/SEI-2003-TR-021). Software Engineering Insti-
tute, Carnegie Mellon University, 2003. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=6751

[Barbacci 2003] Barbacci, Mario; Ellison, Robert; Lattanze, Anthony; Stafford, Judith; Wein-
stock, Charles; & Wood, William. Quality Attribute Workshops (QAWs), 3rd ed. (CMU/SEI-
2003-TR-016). Software Engineering Institute, Carnegie Mellon University, 2003. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=6687

[Bass 1997] Bass, Len; Clements, Paul; & Kazman, Rick. Software Architecture in Practice, 1st
ed. Addison-Wesley Professional, 1997 (ISBN 0201199300). (3rd ed. published 2012, ISBN
0321815734).

http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=6751
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=6751
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=6687
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=6687

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 239
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Brown 1995] Brown, Alan; Carney, David J.; Clements, Paul C.; Meyers, B. Craig; Smith, Den-
nis B.; Weiderman, Nelson H.; & Wood, William G. “Assessing the Quality of Large, Software-
Intensive Systems: A Case Study.” Proceedings of the 5th European Software Engineering Con-
ference (ESEC ’95) (Published as Lecture Notes in Computer Science 989) Sitges, Spain, Septem-
ber 25-28, 1995. Springer, 1995.

[Brownsword 1996] Brownsword, Lisa & Clements, Paul. A Case Study in Successful Product
Line Development (CMU/SEI-96-TR-016). Software Engineering Institute, Carnegie Mellon Uni-
versity, 1996. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12587

[Clements 1996] Clements, Paul & Northrop, Linda. Software Architecture: An Executive Over-
view (CMU/SEI-96-TR-003). Software Engineering Institute, Carnegie Mellon University, 1996.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12509

[Clements 2002] Clements, Paul; Bachmann, Felix; Bass, Len; Garlan, David; Ivers, James; Lit-
tle, Reed; Nord, Robert; & Stafford, Judith. Documenting Software Architectures: Views and Be-
yond, 1st ed. Addison-Wesley Professional, 2002 (ISBN 201703726). (2nd ed. published 2010,
ISBN 0321552687).

[Eeles 2010] Eeles, Peter & Cripps, Peter. The Process of Software Architecting. Addison-Wesley
Professional, 2010 (ISBN 0321357485).

[Freeman 1982] Freeman, Peter & Wasserman, Anthony. Software Methodologies and Ada. Na-
tional Technical Information Service, 1982.

[Hughes 1991] Hughes, David. “ESD Changes Procurement Strategy for Software to Drive Com-
mand Centers; Air Force Electronic System Division’s PRISM Program.” Aviation Week & Space
Technology 135 (August 26, 1991): 56-57.

[Johnson 1978] Johnson, Stephen C. “Yet Another Compiler.” Bell Labs Computer Science Tech-
nical Report 32. Bell Labs, 1978.

[Hofmeister 1999] Hofmeister, Christine; Nord, Robert; & Soni, Dilip. Applied Software Archi-
tecture. Addison-Wesley Professional, 1999 (ISBN 0321643348).

[Kang 1990] Kang, Kyo; Cohen, Sholom; Hess, James; Novak, William; & Peterson, A. Feature-
Oriented Domain Analysis (FODA) Feasibility Study (CMU/SEI-90-TR-021). Software Engineer-
ing Institute, Carnegie Mellon University, 1990. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=11231

[Kazman 1997] Kazman, Rick & Carriere, S. Playing Detective: Reconstructing Software Archi-
tecture from Available Evidence (CMU/SEI-97-TR-010). Software Engineering Institute, Carne-
gie Mellon University, 1997. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12887

[Kazman 2001] Kazman, Rick; O’Brien, Liam; & Verhoef, Chris. Architecture Reconstruction
Guidelines (CMU/SEI-2001-TR-026). Software Engineering Institute, Carnegie Mellon Univer-
sity, 2001. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5741

[Kazman 2002] Kazman, Rick; Asundi, Jayatirtha; & Klein, Mark. Making Architecture Design
Decisions: An Economic Approach (CMU/SEI-2002-TR-035). Software Engineering Institute,

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12587
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12509
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12887
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5741

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 240
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Carnegie Mellon University, 2002. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=6265

[Kruchten 1995] Kruchten, Philippe. “Architectural Blueprints: The ‘4+1’ View Model of Soft-
ware Architecture.” IEEE Software 12, 6 (November 1995): 42-50.

[SEI 2009] Software Engineering Institute. “Army Requires PEOs to Appoint Chief Software Ar-
chitect.” 2009 Year in Review. Software Engineering Institute, Carnegie Mellon University, 2010.

[Shaw 1996] Shaw, Mary & Garlan, David. Software Architecture: Perspectives on an Emerging
Discipline. Prentice-Hall, 1996 (ISBN 0131829572).

[Wojcik 2006] Wojcik, Rob; Bachmann, Felix; Bass, Len; Clements, Paul; Merson, Paulo; Nord,
Robert; & Wood, William. Attribute-Driven Design (ADD), Version 2.0 (CMU/SEI-2006-TR-
023). Software Engineering Institute, Carnegie Mellon University, 2006. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=8147

http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=6265
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=6265

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 241
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Structural Modeling

 The Challenge: Efficiently Replicating Aircrew Trainers

The U.S. Air Force has a long history of using aircrew trainers as an integral part of aircrew train-
ing programs. These trainers are expensive to build. However, the benefits of trainers justify the
expense. Aircrew trainers reduce training costs, improve safety, support security, and provide
flexibility and convenience [Rolfe 1988].

Flight simulators train pilots for flight missions in a safe, convenient, and cost-efficient way. To
effectively provide this training, the software for a flight simulator must work with the hardware
to faithfully reproduce the behavior of the aircraft being simulated. Flight simulator software,
therefore, must perform in real time, be developed and continually altered to keep pace with the
technological advances in the simulated aircraft, and undergo a validation process that certifies
acceptability as a pilot training device. In addition to this inherent complexity, the flight simulator
software is typically very large in scale, in the range of one million lines of high-level language
code. For example, the B-2 trainer contained more than 1.7 million lines of Ada simulation code.

The scale and complexity of the software precipitated numerous problems in both the developed
product and the development and evolution processes. Modifications to the simulator software se-
verely lagged behind modifications to the aircraft being simulated, resulting in a software product
that did not faithfully simulate the current aircraft. As is often the case in large-scale software de-
velopment efforts, geographically remote software teams were concurrently developing parts of
the flight simulator system. The time required to integrate these parts, developed by the diverse
work teams, was growing at alarming rates. The correction of errors in the simulator software was
complicated and time consuming. Modifications to add functionality were also time sinks. Often
the cost of modifications to the software exceeded the software development cost.

Moreover, certain flight behaviors were becoming increasingly difficult to simulate because the
organization of functionality in the simulator was different from that in the physical aircraft. The
unwieldy software architecture reduced effective communication of the design in reviews and in-
teractions among the work team members. Ultimately, this lack of effective communication de-
creased the control and visibility of the software to the point where it created risk in development
and maintenance.

 A Solution: Structural Modeling

The recognition of the technical risk with simulators was the catalyst that drove the development
of the structural modeling method. Structural modeling is an object-based software engineering
strategy developed by the collaborative efforts of the U.S. Air Force, Air Force contractors, and
the SEI. The broad objective behind structural modeling was to take a problem domain of great
complexity and scale and to abstract it to a coarse enough level to make it manageable, modifia-
ble, and able to be communicated to a diverse user and developer community.

Work on structural modeling began in 1986, when Air Force engineers recognized that the tradi-
tional software architecture for flight simulators was reaching its limits. The SEI initially re-
sponded to a request by the Air Force by initiating an effort to assist with the simulator for the B-2
(at that time a classified program). What the contractor and the Air Force at first thought was a
problem in applying Ada, the SEI quickly realized was a conceptual problem in applying notions

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 242
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

of abstraction to a FORTRAN-oriented structure that was typical for many simulator software de-
velopers. After the initial problem was resolved, the Air Force and the SEI recognized an oppor-
tunity to focus on the structure of software for simulators, which the SEI dubbed “structural mod-
eling.” The SEI developed a reference architecture for aircraft simulators with supporting tools to
enable simulator developers to develop simulators more rapidly and economically [Howard
1993].

The initial goal of the joint effort was to reduce the complexity of producing aircrew trainer simu-
lation software, particularly complexity as encountered during software integration. Structural
modeling was based on the realization that the difficulties and concerns with the evolution of air-
craft and simulators represented design issues to be addressed by the software architecture. It can
be understood as a design effort to produce a software architecture that supports changeability.
The general software design principles that were applied included separation of domain common-
ality from variability (separating the code expected to remain constant for a domain from the code
expected to change); object-based partitioning based on the physical structure of the simulated air-
craft; separation of concerns; restriction of interfaces and mechanisms for communication be-
tween components; and restriction of the flow of control [Abowd 1993, Chastek 1996].

 The Consequence: Efficient Reuse of a Reference Model for Aircrew
Trainers

In a series of interviews, experts from organizations using structural modeling reported improve-
ments that included significant reductions in the following:
• Test problems. Test descriptions (test problems) were reduced from 2,000–3,000 in a previous

data-driven simulator of comparable size (the B-52) to 600–700 test descriptions with struc-
ture modeling.

• Staff requirements for installation. The need for onsite staff during initial installation and use
was reduced by about 50 percent. Fault detection and correction were significantly easier.

• Test expense. Staff typically could isolate a reported problem offline rather than going to a
site. Reduced testing and fault isolation on the actual trainer was particularly significant given
the high expense of trainer time.

• Side effects from software changes. Most projects noted that side effects from software
changes were a rare occurrence, primarily due to the encapsulation of functionality in subsys-
tems.

• Defects. With the use of structural modeling, defect rates for one project were half that found
on previous data-driven simulators.

Another reported improvement was extreme ease of integration. All projects commented on the
lack of the “big-bang” effect compared to their previous data-driven simulators of comparable
size. The use of common structural types for components and a standard mechanism for commu-
nication between components were cited as key contributors. Also, there was significant improve-
ment in reuse across trainers. One project reported reuse of the software architecture, executive,
and subsystem controllers.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 243
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 The SEI Contribution

As a result of the collaboration among the SEI, the Air Force, and Air Force contractors, a culture
of structural modeling evolved. Structural modeling experience was gained in a number of simu-
lator acquisitions. While data specific to those acquisitions are not generally available, there have
been some internal reports within the SEI and Air Force that have described portions of the ob-
ject-based technology underlying the structural modeling approach [Lee 1988, USAF 1993]. The
following projects used structural modeling with SEI support:
• B-2 Weapons System Trainer, started in 1986, with 1.7 million lines of Ada code developed

by Hughes Training/Link Division. Hughes/Link continued to maintain the system.

• C-17 Aircrew Training System (ATS), started in 1990 with 350,000 lines of Ada code devel-
oped by McDonnell Douglas. McDonnell Douglas owned the software and performed the
training for the Air Force.

• Special Operations Forces (SOF) ATS supporting the C-130, started in 1991 with 750,000
lines of Ada code developed by Loral Federal Systems. One-half of the system used structural
modeling.

• Simulator Electric Combat Training (SECT), started in 1992 with 250,000 lines of Ada code
developed by AAI Corporation. Three-quarters of the system used structural modeling.

Once a reference architecture was established for the B-2 simulator that appealed to the aircraft
simulator community, the SEI was encouraged to help the Air Force apply a similar approach to
other aircraft simulators. The SEI soon realized that the same reference architecture could be in-
corporated and began to build tools to simplify the process of generating the structure as abstrac-
tions of the physical components of the aircraft. Reapplication of the reference architecture and
growing set of tools enabled the simulator SOF to develop a family of simulators. This led the SEI
to begin thinking about application of these notions to other applications, ultimately contributing
to evolution of the SEI’s seminal and influential work in software product lines.

 References

[Abowd 1993] Abowd, Gregory; Bass, Len; Howard, Larry; & Northrop, Linda. Structural Mod-
eling: An Application Framework and Development Process for Flight Simulators (CMU/SEI-93-
TR-014). Software Engineering Institute, Carnegie Mellon University, 1993. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=11899

[Chastek 1996] Chastek, Gary & Brownsword, Lisa. A Case Study in Structural Modeling
(CMU/SEI-96-TR-035). Software Engineering Institute, Carnegie Mellon University, 1996.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12675

[Howard 1993] Howard, Larry & Bass, Len. “Structural Modeling for Flight Simulators,” 876-
881. Proceedings of the 1993 Summer Computer Simulation Conference (SCSC ’93). Boston,
MA, July 19–21, 1993.

http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=11899
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=11899
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12675

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 244
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Lee 1988] Lee, K.; Rissman, M.; D’Ippolito, R.; Plinta, S.; & Van Scoy, R. An OOD Paradigm
for Flight Simulators, 2nd ed. (CMU/SEI-88-TR-30, ADA204849). Pittsburgh, PA: Software En-
gineering Institute, Carnegie Mellon University, 1989. http://resources.sei.cmu.edu/as-
set_files/TechnicalReport/1993_005_001_16190.pdf

[Rolfe 1988] Rolfe, J. M. & Staples, K. J. Flight Simulation. Cambridge University Press, 1988
(ISBN 0521357519).

[SEI 1992] Software Engineering Institute. “Reducing Technical Risk with Structural Modeling,”
Bridge (a quarterly publication of the SEI). December, 1993.

[USAF 1993] United States Air Force. An Introduction to Structural Models (USAF ASC-TR-
935-5008). Wright-Patterson AFB, 1993.

http://resources.sei.cmu.edu/as-set_files/TechnicalReport/1993_005_001_16190.pdf
http://resources.sei.cmu.edu/as-set_files/TechnicalReport/1993_005_001_16190.pdf

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 245
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Federal Aviation Administration Study

 The Challenge: Evaluate a Problematic FAA System Under Development

By 1995, the FAA had spent $2 billion on a project to upgrade the in-flight air traffic control
(ATC) system. The attempt to upgrade the system had gone through many well-documented and
costly delays [Glass 1997]. At that time, it continued to fail some of its system tests; as a result, it
still had not been put into service. The existing system, which had been launched a number of
years earlier, had obsolete hardware and software and was becoming very difficult to maintain. In
addition, because of rapidly expanding hardware advances, there were not enough replacement
hardware parts available (mostly transistors), and the hardware in use was slow.

 A Solution: SEI Architecture Evaluation Methods

The SEI was contacted by senior officials at the U.S. Department of Transportation (DoT) and the
DoD to conduct an independent technical assessment to determine if the system could be sal-
vaged. This work by the SEI, in a joint project with Lincoln Laboratory, represented one of the
first times that the SEI had done work on behalf of a non-DoD federal agency. Lincoln Laboratory
personnel had domain knowledge of ATC systems and knew the FAA well, and the joint
SEI/Lincoln Laboratory team worked together very successfully. The FAA also provided the team
with three members to contribute insights from the FAA perspective and provide unfettered ac-
cess to personnel and documents. The team was asked to provide input to FAA management on
the technical question of whether the upgraded system was salvageable and, if so, what would
need to be done to feel confident that the system would perform at an acceptable level. If the sys-
tem was not salvageable, the FAA was prepared to walk away from the two billion dollar invest-
ment that it had made.

The SEI/Lincoln Laboratory/FAA team split into subgroups to investigate the areas of modifiabil-
ity, availability, scheduling, code quality, documentation, software tools, maintenance environ-
ment, testing, change management, and software processes.

To address the question of modifiability, the SEI developed a set of likely change scenarios. At
that time, the SEI was just beginning to develop scenario-based methods for evaluating software
architectures. The prime contractor was asked to demonstrate the amount of change that would be
required for each of the likely changes to the system. As a result, the subgroup determined that
with regard to modifiability, significant changes could be put in place with relatively little disrup-
tion to the system. This was the first practical application of a method for assessing the quality at-
tribute of modifiability, and this method formed part of the foundation for the SEI Software Ar-
chitecture Analysis Method. In turn, after much future analysis, some of the ideas for SAAM later
evolved into the Architecture Tradeoff Analysis Method and the Quality Attribute Workshop.

The other subgroups focused on their respective topics. One group analyzed the quality attribute
of availability because the system had been developed to have extensive hardware and software
redundancy, and many of the decisions on the structure of the system had been made to ensure
availability. The availability assumptions were examined; while many different structures for
availability could have been developed, the one in use was judged to be adequate.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 246
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Another group inferred the quality of code by examining code samples. The group also analyzed
samples of the documentation for accuracy, readability, and consistency. The other subteams ex-
amined the methods and tools that were to be used in both the development and maintenance en-
vironments, the change-management model, the use of schedulability models, and the processes
that had been used. Several observations were that the FAA maintenance staff in Atlantic City
was using obsolete technology with no relationship to the tools and methods that the contractor
had adopted. In addition, the proposed requirements for interoperability of the tools were unprece-
dented and had not been demonstrated to work. There had not previously been a rigorous sched-
ulability analysis even though this method was now common practice. The subteam also analyzed
the change-management process. While the overall model was sound, the group made recommen-
dations for setting more effective priorities on needed changes and tracking them.

The general conclusion of the assessment team was that the proposed new architecture was good,
the code was fair, and the documentation was poor. The team provided 14 recommendations, both
technical and non-technical, for the contractor and the FAA to follow if the decision was made to
keep the existing system.

 The Consequence: Successful FAA System Upgrade

The assessment team’s 14 recommendations had significant impact because the inspector general
for the DoT was following this assessment closely, as was the General Accounting Office58
(GAO) [GAO 1999]. After the study was completed, the FAA was directed by the DoT and GAO
to adhere to these 14 points. The recommendations were adopted within the FAA as well as by the
contractor. As a result of the team’s study, the FAA gave the contractor a fixed-price contract to
complete the work. This contract incorporated each of the 14 points of the SEI- Lincoln Labora-
tory team. The contractor completed the work, the system was upgraded, and this system is in use
today.

The upgrade process went smoothly enough that all parties involved were able to declare success.

Another positive result of the experience was that the FAA contracted with the SEI for a number
of follow-up projects. This project also represented the first of many SEI independent technical
assessments of non-DoD government acquisition projects. The team documented its approach,
and it was used as a model for a number of these projects. In addition, the team wrote several arti-
cles describing the project to the broader research community and presented these papers at two
technical conferences in 1995, the European Software Engineering and Foundations of Software
Engineering conferences [Brown 1995a, 1995b].

 The SEI Contribution

This entire effort was a collaboration between Lincoln Laboratory and the SEI. Lincoln Labora-
tory provided the domain knowledge as well as the operational understanding of the FAA. With-
out that expertise, the effort would have had a low probability of success. The SEI contributed its

58 At the time this was the General Accounting Office; it is now the Government Accountability Office.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 247
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

evolving understanding of software architectures and how they could be documented and as-
sessed. As a result of this effort, the SEI was able to demonstrate many of the underlying concepts
and it served as a basis for further refinement in subsequent software architecture-related efforts.

 References

[Brown 1995a] Brown, Alan; Carney, David J.; Clements, Paul C.; Meyers, B. Craig; Smith, Den-
nis B.; Weiderman, Nelson H.; & Wood, William G. “Assessing the Quality of Large, Software-
Intensive Systems: A Case Study.” Proceedings of the Fifth European Software Engineering Con-
ference (ESEC ’95) (Published as Lecture Notes in Computer Science 989) Sitges, Spain, Septem-
ber 1995. Springer, 1995.

[Brown 1995b] Brown, A. W.; Carney, D. J.; & Clements, P. “A Case Study in Assessing the
Maintainability of Large, Software-Intensive Systems,” 240-247. Proceedings of the 1995 Inter-
national Symposium on the Frontiers of Software Engineering. Tucson, Arizona, 1995. IEEE
Computer Society, 1995.

[GAO 1999] General Accounting Office. Observations on FAA’s Air Traffic Control Moderniza-
tion Program. Testimony Before the Subcommittee on Commerce, Science and Transportation,
U.S. Senate, March 1999. http://www.gao.gov/archive/1999/r199137t.pdf

[Glass 1997] Glass, Robert, L. Software Runaways. Prentice Hall, 1997 (ISBN 013673443X).

http://www.gao.gov/archive/1999/r199137t.pdf

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 248
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Reducing the Cost of Modifying the User Interface

 The Challenge: Cost-Effectively Modifying User Interfaces for Defense
Systems

In studies dating back to 1978, data showed that the cost of development and modification of the
user interface contributed over 50 percent to the total cost of ownership [Sutton 1978]. Attempts
to reduce the cost of developing defense systems clearly had to include reduction in the cost of de-
veloping and maintaining the user interface.

 A Solution: The Serpent User Interface Management System

The high cost of developing and modifying the user interface led to a class of systems intended to
reduce this cost. These user interface management systems (UIMSs) varied in their target audi-
ence (developers and end users) and in their approaches. Serpent was created and distributed by
the SEI to demonstrate UIMS concepts to developers of DoD software-intensive systems. In addi-
tion, SEI staff published articles about Serpent (for example those by Bass and Lee [Bass 1989,
1990; Lee 1990].

In the general case, a UIMS is a set of tools for the specification and execution of the user inter-
face portion of the system. A UIMS provides tools for the specification of the static, layout por-
tion and the dynamic portion of the user interface, and for the execution of the specifications.

Serpent was a UIMS that approached the problem of reducing the total ownership cost of the user
interface by separating the user interface portion of a system from the functional portion, allowing
for modifications to the user interface with minimal impact on the remainder of the system. The
user interface is a major concern of most computing systems and, generally, is distinct from the
concerns of the application. Separating the user interface from the application leads to a three-part
division of a software system: the presentation of the user interface, the functionality of the appli-
cation, and the mapping between the user interface and the application.

The advantages of this division are the following:
• It allows modifications of the user interface to be done with minimal modification to the func-

tional portion and vice versa. It does this by isolating the functional portion of the application
from the details of the user interface. For example, whether a command is specified through a
menu choice or through a textual string is not relevant to the functional portion of an applica-
tion. Removing these concerns from the functional portion of the application allows the type
of interface to be modified dramatically without any modifications to the application.

• It allows the development of tools that are specialized for the design, specification, and exe-
cution of the user interface. For example, a layout editor, a dynamic specification language,
and a runtime to support them can be included.

Serpent supported the incremental development of the user interface from prototyping through
production and maintenance. It did this by providing an interactive layout editor for prototyping,
by integrating the layout editor with a dynamic specification language for production and mainte-
nance, and by having an open architecture so that new user interface functionality could be added
during the maintenance phase.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 249
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

The basic features of Serpent were simple enough for use during the prototyping phase, yet so-
phisticated enough for use in developing the prototype into an operational system. Serpent was
designed to be extensible in the user interface toolkits that can be supported. Hence, a system de-
veloped using Serpent could be migrated to new technologies without time-consuming and expen-
sive reengineering of the application portion. Serpent consisted of a language designed for the
specification of user interfaces, language to define the interface between the application and Ser-
pent, a transaction processing library, an interactive editor for the specification of dialogues and
for the construction and previewing of displays, and a variety of input/output (I/O) technologies.

Serpent provided many features to address the requirements, development, and maintenance
phases of a project. For the requirements phase, Serpent provided a language and an editor to de-
fine the user interface. For the development phase, Serpent provided a set of tools that simplify
the development of the user interface. For the maintenance phase, Serpent allowed integration of
new technologies as well as the ability to modify the user interface. Specifically, Serpent did the
following:
• It provided generality in supporting a wide range of both applications and I/O toolkits through

its use of database-like schemas.

• It provided a set of tools that simplified the user interface implementation process.

• It encouraged the separation of software systems into user interface and “core” application
portions, a separation that would decrease the cost of subsequent modifications to the system.

• It supported rapid prototyping and incremental development of user interfaces.

• It facilitated the integration of new user interface toolkits into the user interface portion of a
system.

• It supported both synchronous and asynchronous communication, allowing real-time applica-
tions to satisfy timing constraints without waiting for user input.

 The Consequence: Understanding the Relationship Between the User
Interface and Software Architecture

The prototypes developed during this line of worldwide research into UIMS were not used di-
rectly for the development of software. Rather, the effort sensitized a generation of user interface
researchers to the impact of software engineering architectural decisions on the ease of modifying
the user interface, and it contributed an important concept to the discipline of software architec-
ture that emerged in the 1990s.

Current DoD systems, such as the Command Post of the Future, now follow this separation of
user interface. DoD Program Offices, such as Force XXI Battle Command, Brigade-and-Below
(FBCB2), often require such separation.

 The SEI Contribution

Much of the work on the development of different software architecture models for user interface
construction was done by the International Federation of Information Processing Working Group
on User Interface Engineering (IFIP WG2.7/13.4) as well as by ad hoc groups of user interface
software developers. Because of Serpent, the SEI was able to make significant contributions both
in the work of IFIP WG2.7 as its members developed Presentation-Abstraction-Control (PAC)

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 250
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

and in organizing an ad hoc working group of user interface software developers that developed
Arch/Slinky [Bass 1992].

Serpent was one of a number of user interface models introduced from 1980–1990. In addition to
PAC and Arch/Slinky, these include the Model View Controller and the Seeheim Model. These
models are still being covered in standard Human Computer Interaction textbooks [Dix 2003].

 References

[Bass 1989] Bass, L. “Serpent.” ACM CHI ’89 Human Factors in Computing Conference. Austin,
Texas, April 30-June 4, 1989. ACM, 1989.

[Bass 1990] Bass, L.; Clapper, B.; Hardy, E.; Kazman, R.; & Seacord, R. “Serpent: A User Inter-
face Environment.” 1990 USENIX Winter Conference, Washington, D.C., January 1990.

[Bass 1992] Bass, L.; Faneuf, R.; Little, Reed; Mayer, Niels; et al. “A Metamodel for the Runtime
Architecture of an Interactive System,” UIMS Tool Developers Workshop. SIGCHI Bulletin 24, 1
(January 1992): 34-37.

[Dix 2003] Dix, Alan; Finlay, Janet E.; Abowd, Gregory D.; & Beale, Russell. Human-Computer
Interaction, 3rd ed. Prentice-Hall, 2003 (ISBN 0130461091).95

[Lee 1990] Lee, Ed; Hall, Frank; Bowers, Andrea, Yang, Sherry; Bass, Len; Lemke Andreas; &
Shan, Yen-Ping. “User-Interface Development Tools.” IEEE Software 7, 3 (May 1990): 31-36.

[Sutton 1978] Sutton, Jimmy A. & Sprague, Ralph H. Jr. A Study of Display Generation and Man-
agement in Interactive Business Applications. (Technical Report RJ2392), IBM Research, No-
vember 1978.17

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 251
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Software Architecture Analysis Method

 The Challenge: Predicting Systems Development Problems in Advance

One of the recurring themes of the various defense challenge problems is that of predicting prob-
lems before a system has been built. Maintenance and improvement costs represent more than half
the total cost of a system, and this percentage has been steadily growing since 1960 [Jones 2006].
The problem for DoD is to predict maintenance problems before the system is constructed and be-
fore these problems occur.

 A Solution: The Software Architecture Analysis Method

The Software Architecture Analysis Method grew out of an effort undertaken by members of the
Serpent user interface project after the UI project was officially ended. The members of the UI
project were active participants in the Interface Federation of Information Processing Working
Group on User Interface Engineering (IFIP WG 2.7/13.4). This group was composed of members
interested in user interface management systems (UIMSs), and the group had many discussions
that centered on the thesis “my system is better than your system.” From these discussions, the
SEI members of the working group gathered two principles that were instrumental in the SAAM
and that have been embodied in almost every software architecture evaluation method since the
SAAM:
• Different developers have different business goals for their systems. An architecture evalua-

tion must evaluate an architecture against the business goals for the system. This means the
architecture evaluation method must either explicitly state what goals it is evaluating or elicit
the goals as part of the evaluation.

• Evaluating for a property such as maintainability without a specific definition of what main-
tainability means is pointless. Every system is modifiable for some set of modifications and
not modifiable for others.

The importance of understanding the business goals prior to evaluating an architecture can be
seen in the claims made for various UIMSs that led to the development of the SAAM. Examples
of these claims are:
• “We have developed … user interface components that can be reconfigured with minimal ef-

fort.” [Pittman 1990]

• “Serpent … encourages the separation of software systems into user interface and ‘core’ ap-
plication portions, a separation which will decrease the cost of subsequent modifications to
the system.” [Bass 1989]

• “This Nephew UIMS/Application interface is better [than] traditional UIMS/Application in-
terfaces from the modularity and code reusability point of views.” [Sleekly 1989]

Each of these systems, which nominally are supposed to serve the same purpose, has different
goals. Thus, comparing or evaluating architectures must be done in light of the system’s goals.
Whether these are the correct goals is outside of the scope of an architecture comparison or evalu-
ation.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 252
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Even if two systems have the same goal—for example, making the system more modifiable—
evaluating an architecture against that goal directly is not possible because the set of potential
modifications is unbounded. Modifying an avionics sys-
tem to do logistic planning is neither desirable nor feasi-
ble. Enabling the evaluation of an architecture for a par-
ticular property requires being specific about the types of
modifications that are anticipated. The type of anticipated
modifications also reflects the business goals for the sys-
tem. Will a particular system subsequently be integrated
into a system of systems? Is the replacement of a particu-
lar system in the planning process? The answers to these
questions will determine what set of modifications are
likely and how flexible the architecture for a system
needs to be.

The SAAM required that the business owner of a system
specify anticipated changes through the use of “change
scenarios.” A change scenario specifies that “this system should be modified to perform this spe-
cific new additional function.” The SAAM calls for the architect to describe what modifications
will be made to the system to achieve the new functionality. The extent of these changes is then
used to measure how difficult the changes will be to implement. The business owner of the system
must then decide whether the anticipated difficulty is within bounds or whether the architecture
design should be modified to make the anticipated changes easier.

The steps that the SAAM implemented were to develop scenarios, describe the architecture of the
system under consideration, evaluate the difficulty of each individual scenario, assess scenario in-
teractions, and create the overall evaluation. The consolidated final output of a SAAM evaluation
was a rating of the architecture with respect to the total set of scenarios.

 The Consequence: Robust Multi-Quality Architectural Evaluation Method

The SAAM was seminal in the use of scenarios to perform architecture evaluation. An immediate
outcome of applying the SAAM in practice was that stakeholders did not want a method that only
evaluated a system for a single quality attribute. The SAAM led directly to the Architecture
Tradeoff Analysis Method, which evaluated a system for a collection of quality attributes.

Major defense contractors, such as Boeing and Raytheon, now have architecture evaluation teams
and architecture evaluation as a portion of their architect certification process. The U.S. Army
staff reported repeatedly that use of the scenario-based architecture evaluation methods reduced
risk in schedule and cost, improved documentation, and resulted in a higher quality product [SEI
2009].

 The SEI Contribution

The SEI pioneered the use of scenario-based methods in the evaluation of software architectures.
The SAAM introduced the concept of a quality attribute scenario, giving specific modifications
against which the system is to be tested. Later evaluation methods generalized these modifiability
scenarios to quality attribute scenarios.

 The View from Others

SAAM is the first widely promul-
gated scenario-based software
architecture analysis method.

– Mugurel T. Ionita,
Department of
Mathematics and
Computing Science,
Technical University
Eindhoven, The
Netherlands [Ionita 2002]

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 253
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

A survey of software architecture evaluation methods published in IEEE Transactions on Soft-
ware Engineering identifies six different scenario-based evaluation methods, all of which cite
SAAM as one of their sources [Dobrica 2002].

SEI staff members published three scholarly articles on the SAAM [Kazman 1994, 1996; Clem-
ents 1995], and they had been cited by others 441, 410, and 58 times, respectively as of August
2014. The SEI also participated in industry groups to document techniques used in software archi-
tecture evaluation [Kruchten 2001].

The SEI teaches courses and certifies individuals as competent in scenario-based architecture
evaluation methods.59

 References

[Bass 1989] Bass, L. Serpent Overview (CMU/SEI-89-UG-2). Software Engineering Institute,
Carnegie Mellon University, 1989. resources.sei.cmu.edu/asset_files/WhitePa-
per/2007_019_001_29297.pdf

[Clements 1995] Clements, Paul; Bass, Len; Kazman, Rick; & Abowd, Gregory. “Predicting Soft-
ware Quality by Architectural Evaluation,” 485-497. Proceedings of the Fifth International Con-
ference on Software Quality, Austin, Texas, October 1995.

[Dobrica 2002] Dobrica, Lillian; & Niemela, Elia. “A Survey on Software Architecture Analysis
Methods.” IEEE TOSE, July 2002. http://people.cis.ksu.edu/~dag/740fall02/materi-
als/740f02presentations22.pdf

[Ionita 2002] Ionita, Mugurel T.; Hammer, Dieter K.; & Obbink, Henk. “Scenario-Based Soft-
ware Architecture Evaluation Methods: An Overview.” In Workshop on Methods and Techniques
for Software Architecture Review and Assessment at the International Conference on Software
Engineering. Orlando, FL, May 19-25, 2002. http://www.win.tue.nl/oas/architecting/aimes/pa-
pers/Scenario-Based%20SWA%20Evaluation%20Methods.pdf

[Jones 2006] Jones, C. The Economics of Software Maintenance in the Twenty First Century.
2006. http://www.compaid.com/caiinternet/ezine/capersjones-maintenance.pdf

[Kazman 1994] Kazman, Rick; Bass, Len; Webb, Mike; & Abowd, Gregory. “SAAM: A Method
for Analyzing the Properties of Software Architectures,” 81-90. Proceedings of the 16th Interna-
tional Conference on Software Engineering. ICSE 94, Sorrento, Italy, May 16-21, 1994. IEEE
Computer Society Press, 1994.

[Kazman 1996] Kazman, R.; Abowd, G.; Bass, L.; & Clements, P. “Scenario-Based Analysis of
Software Architecture.” IEEE Software 13, 6, (November 1996): 47-55.

[Kruchten 2001] Kruchten, P.; Obbink, H.; Kozaczynski, W.; Posterna, H.; et al. Software Archi-
tecture Review and Assessment (SARA) Report. SARA W. G., 2001. http://pkruchten.files.word-
press.com/2011/09/sarav1.pdf

59 See http://www.sei.cmu.edu/training/find/courses.cfm?category=Software%20Architecture

http://people.cis.ksu.edu/~dag/740fall02/materi-als/740f02presentations22.pdf
http://people.cis.ksu.edu/~dag/740fall02/materi-als/740f02presentations22.pdf
http://www.win.tue.nl/oas/architecting/aimes/pa-pers/Scenario-Based%20SWA%20Evaluation%20Methods.pdf
http://www.win.tue.nl/oas/architecting/aimes/pa-pers/Scenario-Based%20SWA%20Evaluation%20Methods.pdf
http://www.compaid.com/caiinternet/ezine/capersjones-maintenance.pdf
http://pkruchten.files.word-press.com/2011/09/sarav1.pdf
http://pkruchten.files.word-press.com/2011/09/sarav1.pdf
http://pkruchten.files.word-press.com/2011/09/sarav1.pdf

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 254
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Pittman 1990] Pittman, J. & Kitrick, C. “VUIMS: A Visual User Interface Management System,”
36-46. Proceedings of the ACM SIGGRAPH Symposium on User Interface Software and Technol-
ogy, Snowbird, Utah, October 1990.

[SEI 2009] SEI Monitor, January 2009. Software Engineering Institute, Carnegie Mellon Univer-
sity, 2009. http://www.sei.cmu.edu/saturn/2009/Monitor_Jan_09_Small2.pdf

[Szekely 1989] Szekely, P. “Standardizing the Interface Between Applications and UIMSS,” 34-
42. Proceedings of the ACM SIGGRAPH Symposium on User Interface Software and Technology.
Williamsburg, Virginia, November 13-15, 1989. ACM, 1989.

http://www.sei.cmu.edu/saturn/2009/Monitor_Jan_09_Small2.pdf

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 255
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Quality Attributes

 The Challenge: Meet the Non-Functional Requirements of Software
Systems

In the early 1990s, there did not exist a structured and repeatable way of analyzing tradeoffs
among the non-functional requirements, or quality attributes, of a system.60 Analysis of such
tradeoffs was ad hoc and intuitive, and there was not a way for system developers to explain to
other stakeholders in their organizations why they thought their proposed systems were appropri-
ate or superior to other system designs or architectures for achieving desired quality attributes.
This problem for software developers was articulated by Boehm as early as 1978 [Boehm 1978]:

Finally, we concluded that calculating and understanding the value of a single overall metric
for software quality may be more trouble than it is worth. The major problem is that many of
the individual characteristics of quality are in conflict; added efficiency is often purchased at
the price of portability, accuracy, understandability, and maintainability; added accuracy of-
ten conflicts with portability via dependence on word size; conciseness can conflict with legi-
bility. Users generally find it difficult to quantify their preferences in such conflict situations.

 A Solution: Focus on Tradeoffs Among Quality Attributes

The SEI recognized, in the early 1990s, that architecture-like thinking was evolving in various SEI
efforts and decided to devote attention to the emerging discipline of architecture-centric engineering
by creating a focus on software architecture. The idea that quality attributes influence the shape of
the architecture, and that the architecture is fundamental to the system, emerged from SEI work in
rate monotonic analysis (RMA). Initially, SEI staff members worked on the theory of scheduling,
and on making scheduling theory practical by modifying runtime systems and compilers. Later, this
work led to the realization that scheduling theory could be used to analyze systems as well as to
build them—that the structure of a system can be looked at critically from the point of view of real-
time scheduling, yielding valuable insights about predicted system behavior. In this way, SEI work
in real-time systems evolved from scheduling to analysis. The notion of considering systems from
an analytic point of view, and how such a consideration gives insight into structure, was the key in-
sight that emerged from RMA; the analytical framework that RMA provided led to structuring prin-
ciples for how to design and analyze real-time systems. By analogy, SEI staff members realized that
such a framework could be applied to every other important quality attribute, leading to the conclu-
sion that quality attributes are the dominant influence on architecture.

From the early days of this work, SEI staff members decided that architecture is about making
tradeoffs among various quality attributes, including performance, security, modifiability, reliability,
and usability, system qualities that cannot be achieved without a unifying architectural vision. Archi-
tecture came to be seen and used as an artifact for early analysis to make sure that a design approach
will yield an acceptable system. SEI researchers also concluded that quality attributes are the domi-
nant influence on scheduling, and on making scheduling theory practical by modifying runtime sys-

60 Non-functional requirements describe characteristics (qualities) of a system—that is, how it should

be—in contrast to functional requirements, which describe behaviors (functions) of a system—what
it should do.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 256
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

tems and compilers. Later, this work led to the realization that scheduling theory could be used to an-
alyze systems as well as to build them—that the structure of a system can be looked at critically from
the point of view of real-time scheduling, yielding valuable insights about predicted system behavior.

Developing systematic ways to relate the software quality attributes of a system to the system’s
architecture provides a sound basis for making objective decisions about design tradeoffs and ena-
bles engineers to make reasonably accurate predictions about a system’s attributes that are free
from bias and hidden assumptions. The ultimate goal was
the ability to quantitatively evaluate and trade off multi-
ple software quality attributes to arrive at a better overall
system [Barbacci 1995].

Toward this goal, the SEI developed the Architecture
Tradeoff Analysis Method (ATAM), described in the next
section, and the Quality Attribute Workshops (QAWs)
[Barbacci 2003a], a method for identifying architecture-
critical quality attributes before there is a software archi-
tecture to which the ATAM can be applied. Since the de-
velopment of these methods, a focus on quality attributes
has been a consistent theme and emphasis of SEI work in
software architecture.

 The Consequence: Quality Attributes
Reliably Identified, Added to
Specifications

SEI staff members tested and validated this insight into the primacy of quality attributes in their
early experiences conducting architecture evaluations. Whether they were evaluating a financial
system or an avionics system, conversant in the domains but not expert, they succeeded in finding
risks by evaluating the systems from the point of view of different quality attributes. This experi-
ence validated the idea that modifiability principles, real-time principles, or reliability principles
apply independently of domain—whether the system being evaluated is a car or an aircraft.

 The SEI Contribution

A lasting influence of the SEI work in the field of software architecture and software development
can be seen in the pervasive attention paid to quality attributes and a general acknowledgment that
requirements specifications need to include them. Questions of how secure, timely, reliable, and
usable systems must be are now fundamental components of the processes used in all software de-
velopment projects.

 References

[Abowd 1996] Abowd, Gregory; Bass, Len; Clements, Paul; Kazman, Rick; Northrop, Linda; &
Zaremski, Amy. Recommended Best Industrial Practice for Software Architecture Evaluation
(CMU/SEI-96-TR-025). Software Engineering Institute, Carnegie Mellon University, 1997.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12653

 The View from Others

Over the last 15 years, the SEI
has become a sort of mecca for
software architecture—a place
where anyone who is doing any
work related to software archi-
tecture must go.”

– Phillippe Kruchten,
University of British
Columbia and developer
of the Rational Unified
Process (RUP)

 [SEI 2008]

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12653

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 257
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Barbacci 1995] Barbacci, Mario; Klein, Mark; Longstaff, Thomas; & Weinstock, Charles. Qual-
ity Attributes (CMU/SEI-95-TR-021). Software Engineering Institute, Carnegie Mellon Univer-
sity, 1995. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12433

[Barbacci 2003a] Barbacci, Mario; Ellison, Robert; Lattanze, Anthony; Stafford, Judith; Wein-
stock, Charles; & Wood, William. Quality Attribute Workshops (QAWs), 3rd Edition (CMU/SEI-
2003-TR-016). Software Engineering Institute, Carnegie Mellon University, 2003. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=6687

[Barbacci 2003b] Barbacci, Mario; Clements, Paul; Lattanze, Anthony; Northrop, Linda; &
Wood, William. Using the Architecture Tradeoff Analysis Method (ATAM) to Evaluate the Soft-
ware Architecture for a Product Line of Avionics Systems: A Case Study (CMU/SEI-2003-TN-
012). Software Engineering Institute, Carnegie Mellon University, 2003. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=6447

[Boehm 1978] Boehm, B.; Brown, J. R.; Kaspar, J. R.; Lipow, M. L.; & MacCleod, G. Character-
istics of Software Quality. American Elsevier, 1978 (ISBN 0444851054).

[Clements 2005] Clements, Paul; Bergey, John; & Mason, David. Using the SEI Architecture
Tradeoff Analysis Method to Evaluate WIN-T: A Case Study (CMU/SEI-2005-TN-027). Software
Engineering Institute, Carnegie Mellon University, 2005. http://resources.sei.cmu.edu/library/as-
set-view.cfm?AssetID=7467

[Gallagher 2000] Gallagher, Brian. Using the Architecture Tradeoff Analysis Method to Evaluate
a Reference Architecture: A Case Study (CMU/SEI-2000-TN-007). Software Engineering Insti-
tute, Carnegie Mellon University, 2000. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=5109

[Jones 2001] Jones, Lawrence & Lattanze, Anthony. Using the Architecture Tradeoff Analysis
Method to Evaluate a Wargame Simulation System: A Case Study (CMU/SEI-2001-TN-022).
Software Engineering Institute, Carnegie Mellon University, 2001. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?AssetID=5535

[Kazman 1994] Kazman, Rick; Bass, Leonard J.; & Webb, Mike. “SAAM: A Method for Analyz-
ing the Properties of Software Architectures,” 81-90. Proceedings of the 16th International Con-
ference on Software Engineering. ICSE, Sorrento, Italy, May 16–21, 1994. IEEE Computer Soci-
ety Press, 1994

[Kazman 1996] Kazman, R.; Abowd, G.; Bass, L.; & Clements, P. “Scenario-Based Analysis of
Software Architecture.” IEEE Software 13, 6 (November 1996): 47-55.

[SEI 2008] SEI News Items. “Fourth Annual SATURN Workshop Attracts International Software
Architecture Practitioners.” June 6, 2008. http://www.sei.cmu.edu/newsitems/saturn08post.cfm

[SEI 2009a] Software Engineering Institute. “Army Commitment to Strategic Software Improve-
ment Grows,” 17. 2008 Year in Review. Software Engineering Institute, Carnegie Mellon Univer-
sity, 2009.

[SEI 2009b] SEI Monitor, January 2009. Software Engineering Institute, Carnegie Mellon Uni-
versity, 2009. http://www.sei.cmu.edu/saturn/2009/Monitor_Jan_09_Small2.pdf

http://www.sei.cmu.edu/saturn/2009/Monitor_Jan_09_Small2.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12433
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=6687
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=6687
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=6447
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=6447
http://resources.sei.cmu.edu/library/as-set-view.cfm?AssetID=7467
http://resources.sei.cmu.edu/library/as-set-view.cfm?AssetID=7467
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=5109
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=5109
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=5535
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=5535
http://www.sei.cmu.edu/newsitems/saturn08post.cfm

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 258
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Architecture Tradeoff Analysis Method

 The Challenge: Determining the Best Architectural Design for Defense
Systems

Most complex software systems are required to be modifiable and have good performance. They
may also need to be secure, interoperable, portable, and reliable. But for any particular system,
what precisely do these quality attributes mean—modifiability, security, performance, reliability?
The achievement of quality attributes such as these in a software system depends more on the
software architecture than on code-related issues: language choice, fine-grained design, algo-
rithms, data structures, testing, and so forth. Software architectures are complex and involve many
design tradeoffs. Without undertaking a formal analysis process, an organization developing a
system cannot ensure that the architectural decisions made—particularly those that affect the
achievement of particular quality attributes—are advisable ones that appropriately mitigate risks.

In the early 1990s, there was not a structured and repeatable way of analyzing tradeoffs among
quality attributes. Analysis of tradeoffs in quality attributes was ad hoc and intuitive, and there
was not a way for architects to explain to other stakeholders in their organizations why they
thought their proposed architectures were appropriate or superior to other possible architectures.

 A Solution: The Architecture Tradeoff Analysis Method

In an earlier effort, the SEI developed the Software Architecture Analysis Method (SAAM) as a
way of looking at modifiability [Kazman 1994, 1996]. In considering modifiability, SEI research-
ers realized that there were other quality attributes that were important, and that there are tradeoffs
among them. The Architecture Tradeoff Analysis Method (ATAM) emerged from the SAAM as a
way of analyzing these other quality attributes [Kazman 2000].

The purpose of the ATAM is to assess the consequences of architectural decisions in light of qual-
ity attribute requirements and business goals. An ATAM is an early lifecycle analysis method that
is designed to discover risks in decisions that might create future problems in some quality attrib-
ute and to discover tradeoffs in decisions affecting more than one quality attribute. Discovered
risks can then be made the focus of mitigation activities (further design, further analysis, or proto-
typing), and surfaced tradeoffs can be explicitly identified and documented.

An evaluation using the ATAM typically takes three to four days and gathers together a trained
evaluation team, architects, and representatives of the architecture’s various stakeholders. The
ATAM consists of nine steps, which include a discussion of business drivers and architecture, and
architectural approaches, among other topics. The output of an ATAM is a presentation and/or a
written report that includes the major findings of the evaluation. These are typically a set of archi-
tectural approaches identified; a “utility tree”—a hierarchic model of the driving architectural re-
quirements; the set of scenarios generated and the subset that were mapped onto the architecture;
quality-attribute-specific questions that were applied to the architecture and the responses to these
questions; a set of identified risks; a set of identified non-risks; and synthesis of the risks into risk
themes that threaten to undermine the business goals for the system. The most important results
are improved architectures.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 259
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 The Consequence: Effective Evaluation of Architecture Designs

Building on the SAAM, the ATAM represents a further evolutionary development in the use of
scenarios to perform architecture evaluation. Major defense contractors, such as Boeing and Ray-
theon, now have architecture evaluation teams and architecture evaluation as an element of their
architect certification processes. The U.S. Army has reported that use of the ATAM and other sce-
nario-based architecture evaluation methods reduced
risk in schedule and cost, improved documentation, and
resulted in a higher quality product [SEI 2010]. Both
General Motors and the Air Force Space Surveillance
Network Model (SSNAM) used the results of SEI-
conducted ATAM evaluations to inform crucial deci-
sions about system-evolution paths.

Many published case studies document positive results
from the use of the ATAM to evaluate software architec-
tures, including architectures for the U.S. Army’s Warf-
ighter Information Network-Tactical (WIN-T) system
[Clements 2005]; the Common Avionics Architecture
System (CAAS) for a family of U.S. Army Special Op-
erations helicopters [Barbacci 2003]; the Wargame 2000
system at the Joint National Integration Center (formerly
known as the Joint National Test Facility [JNTF]) in
Colorado [Jones 2001]; and a reference architecture for
ground-based command-and-control systems [Gallagher
2000].

The SEI completed a study of the impact of the ASSIP-
sponsored Quality Attribute Workshops (QAWs) and ar-
chitecture evaluations using the ATAM. Ten of the
eleven programs responding to the survey indicated that
the ATAM/QAW produced better results than they tradi-
tionally obtained. Six of the ten indicated that the
ATAM/QAW costs no more than their traditional ap-
proaches. The study also provided evidence of the po-
tential for the ATAM/QAW having even more impact if
done “proactively.”

 The SEI Contribution

The development of the ATAM and its ultimate codification as a methodology for dealing with
tradeoffs among quality attributes, was influenced by a 1996 workshop that the SEI conducted.
Participants from the Georgia Institute of Technology, Motorola, IBM T.J. Watson Research, Car-
negie Mellon University, Siemens, Nortel, Rational, AT&T Bell Laboratories, and Performance
Engineering Services met with SEI staff members to discuss and validate an SEI report on best
practices in architecture evaluation [Abowd 1996]. The workshop helped to shape the structure of
the evaluation method that evolved into the ATAM, which includes the Quality Attribute Work-
shop. The SEI also published case studies documenting the use of QAWs in source selection for a

 The View from Others

The year [2008] also saw a scaling
up of the Army’s interest in learn-
ing and applying the SEI’s soft-
ware architecture knowledge
through ASSIP. A concerted effort
conducted through the SEI helped
the Army grow its ranks of soft-
ware experts trained in the SEI Ar-
chitecture Tradeoff Analysis
Method (ATAM). Army personnel
have taken part in about a dozen
ATAM evaluations to date. The
Army has also seen an added, im-
mediate benefit from the architec-
ture training: The PEOs have used
them to reveal software risks early
in projects’ lifetimes.
 [SEI 2009, p. 17]

It’s a towering accomplishment to
get everyone’s heads wrapped
around this and get all of these im-
portant issues distilled in this
amount of time.

– General Motors staff
on the ATAM

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 260
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

DoD system acquisition [Bergey 2002] and as a tool to evaluate architectural design approaches
in a major system acquisition [Bergey 2000].

A measure of the influence of the SEI architecture methods and techniques is that they have been
incorporated into a handbook for practitioners on the practice of architecting written by an Open
Group Master Certified IT architect [Eeles 2010]. The book advises practitioners on the im-
portance of quality attributes and refers the reader to SEI techniques and methods (including qual-
ity attribute scenarios, architectural tactics, attribute-driven design, and ATAM). Additionally, of
the scholarly articles on the ATAM, the three most-popular [Kazman 1998, 1999, 2001] were
cited, oldest to more recent, 490, 198, and 153 times.

Many architecture evaluation methods emerged after the SEI published and disseminated the
ATAM, and most acknowledge its influence. Bosch, Boeing, and Raytheon have publicly
acknowledged their adoption of the ATAM and the strong influence the ATAM has had on their
approach to developing software-reliant systems. The ATAM is generally acknowledged today to
be the leading method in the area of software architecture evaluation.

 References

[Abowd 1996] Abowd, Gregory; Bass, Len; Clements, Paul; Kazman, Rick; Northrop, Linda; &
Zaremski, Amy. Recommended Best Industrial Practice for Software Architecture Evaluation
(CMU/SEI-96-TR-025). Software Engineering Institute, Carnegie Mellon University, 1997.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12653

[Barbacci 2003] Barbacci, Mario; Clements, Paul; Lattanze, Anthony; Northrop, Linda; & Wood,
William. Using the Architecture Tradeoff Analysis Method (ATAM) to Evaluate the Software Ar-
chitecture for a Product Line of Avionics Systems: A Case Study (CMU/SEI-2003-TN-012). Soft-
ware Engineering Institute, Carnegie Mellon University, 2003. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?AssetID=6447

[Bergey 2000] Bergey, John; Barbacci, Mario; & Wood, William. Using Quality Attribute Work-
shops to Evaluate Architectural Design Approaches in a Major System Acquisition: A Case Study
(CMU/SEI-2000-TN-010). Software Engineering Institute, Carnegie Mellon University, 2000.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5123

[Bergey 2002] Bergey, John & Wood, William. Use of Quality Attribute Workshops (QAWs) in
Source Selection for a DoD System Acquisition: A Case Study (CMU/SEI-2002-TN-013). Soft-
ware Engineering Institute, Carnegie Mellon University, 2002. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?AssetID=5933

[Clements 2005] Clements, Paul; Bergey, John; & Mason, David. Using the SEI Architecture
Tradeoff Analysis Method to Evaluate WIN-T: A Case Study (CMU/SEI-2005-TN-027). Software
Engineering Institute, Carnegie Mellon University, 2005. http://resources.sei.cmu.edu/library/as-
set-view.cfm?AssetID=7467

[Eeles 2010] Eeles, Peter & Cripps, Peter. The Process of Software Architecting. Addison-Wesley
Professional, 2010 (ISBN 0321357485).

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12653
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=6447
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=6447
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5123
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=5933
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=5933
http://resources.sei.cmu.edu/library/as-set-view.cfm?AssetID=7467
http://resources.sei.cmu.edu/library/as-set-view.cfm?AssetID=7467

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 261
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[Gallagher 2000] Gallagher, Brian. Using the Architecture Tradeoff Analysis Method to Evaluate
a Reference Architecture: A Case Study (CMU/SEI-2000-TN-007). Software Engineering Insti-
tute, Carnegie Mellon University, 2000. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=5109

[Jones 2001] Jones, Lawrence & Lattanze, Anthony. Using the Architecture Tradeoff Analysis
Method to Evaluate a Wargame Simulation System: A Case Study (CMU/SEI-2001-TN-022).
Software Engineering Institute, Carnegie Mellon University, 2001. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?AssetID=5535

[Kazman 1994] Kazman, R.; Abowd, G.; Bass, L.; & Webb, M. “SAAM: A Method for Analyz-
ing the Properties of Software Architectures,” 81-90. Proceedings of the 16th International Con-
ference on Software Engineering. ICSE 16, Sorrento, Italy, May 1994.

[Kazman 1996] Kazman, R.; Abowd, G.; Bass, L.; & Clements, P. “Scenario-Based Analysis of
Software Architecture.” IEEE Software 13, 6 (November 1996): 47-55.

[Kazman 1998] Kazman, R.; Klein, M.; Barbacci, M.; Longstaff, T.; Lipson, H. & Carriere, J.
“The Architecture Tradeoff Analysis Method,” 68-69. Proceedings of the 4th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS 98). Monterey, CA, August
10-14, 1998. IEEE Computer Society, 1998.

[Kazman 1999] Kazman, Rick; Barbacci, Mario; Klein, Mark; Carriere, S. Jeremy; & Woods, Ste-
ven G. “Experience with Performing Architecture Tradeoff Analysis,” 54-63. Proceedings of the
International Conference on Software Engineering (ICSE). Los Angeles, CA, May 16-22, 1999.
IEEE, 1999.

[Kazman 2000] Kazman, Rick; Klein, Mark; & Clements, Paul. ATAM: Method for Architecture
Evaluation (CMU/SEI-2000-TR-004). Software Engineering Institute, Carnegie Mellon Univer-
sity, 2000. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5177

[Kazman 2001] Kazman, R.; Asundi J.; & Klein, M. “Quantifying the Costs and Benefits of Ar-
chitectural Decisions,” 297-306. Proceedings of the 23rd International Conference on Software
Engineering (ICSE 2001). May 12-19, 2001. IEEE Computer Society, 2001.

[SEI 2009] Software Engineering Institute. “Army Commitment to Strategic Software Improve-
ment Grows,” 17. 2008 Year in Review. Software Engineering Institute, Carnegie Mellon Univer-
sity, 2009.

[SEI 2010] Software Engineering Institute. “Army Requires PEOs to Appoint Chief Software Ar-
chitect,” 20. 2009 Year in Review. Software Engineering Institute, Carnegie Mellon University,
2010.

http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=5109
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=5109
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=5535
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=5535
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5177

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 262
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Feature-Oriented Domain Analysis

 The Challenge: Achieve Cost Reductions By Means of Software Reuse

A 1993 report by the Government Accounting Office61 [GAO 1993] cited a comprehensive effort
to incorporate software reuse practices into the DoD’s software development efforts. Reuse was
viewed as a way to manage software costs, which in 1993 exceeded $24 billion a year, and to im-
prove the DoD’s ability to develop and maintain high-quality software. In practice, however, the
promise of software reuse had not been realized. The re-
port stated that “methodologies to implement reuse have
not been fully developed, tools to support a reuse process
are lacking, and standards to guide critical software reuse
activities have not been established” [GAO 1993, p. 1].

One of the technical issues cited in the GAO report was
that the variation in the domains in which software reuse
was being attempted was proving intractable. Standard
methods were needed to process information about do-
mains—“domain analysis”—the purpose of which is “to
generalize common features in similar application areas,
identify the common objects and operations in these ar-
eas, and define and describe their relationships.”

 A Solution: Feature-Oriented Domain
Analysis

At this time, the SEI was working with an Army program called Army Tactical Command and
Control System (ATCCS) [Williamson 2005] that had five separate programs supporting five
function areas: maneuver control, air defense, combat service support, intelligence/electronic war-
fare, and fire support. Seeking to identify isolated areas with common requirements shared by
these programs, the SEI identified “domains,” or specific areas of knowledge. An SEI staff mem-
ber on this project proposed the idea of “features” based on experience at AT&T, where equip-
ment builds were classified by their features. For example, for switches, some would be auto-
matic, some would be manual, etc. Features would be the way to analyze the common
characteristics of a domain, prior to formal requirements engineering. The SEI pioneered this idea
of features and developed a methodology that it called “feature-oriented domain analysis,” or
FODA [Kang 1990].

The SEI saw a domain as a special area of knowledge, and characterized large-scale systems as
comprising several domains. The Army asked the SEI to look at movement control—route plan-
ning, scheduling, and deconfliction, to ensure that, for example, a road would not be taken up by
two different vehicles at the same time. Movement control was attractive to the Army because it is
a domain that applied to many of the ATCCS systems. The SEI described movement control as a
domain, identifying commonalities about how units were handled and organized, how routes were
planned and convoys scheduled, etc. After conducting this domain analysis, the SEI developed a

61 Now known as the Government Accountability Office.

The View from Others

An examination of the proceed-
ings from the Software Product
Lines Conference (SPLC) over its
16-year history shows a prepon-
derance of papers that refer to
FODA and domain analysis.
FODA has proven to be a fruitful
research area, and FODA and var-
iation/variability analysis have
been the most common themes at
SPLC.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 263
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

design with some variation built in and did an implementation for the Army, building a system
that could operate on Army equipment.

 The Consequence: Application to Reuse and a Product Lines Approach

Because of the resistance of contractors and the inability of program managers to justify the effort
with ongoing programs, the results of this work were not transitioned to an operational Army sys-
tem. However, the concepts developed were picked up in the reuse and eventually the product
lines communities. The key insight was that effective reuse requires an understanding of the com-
monalities across all systems in a particular mission area, such as command and control, and
where they vary, this information is captured in a model representation. In FODA, the information
was captured in tree fashion with a hierarchy of mandatory features, optional features, and alterna-
tive ways of describing how the features would be used.

The SEI began to hold product line workshops around 1996, and the work that had begun with
FODA evolved into a concentration on product lines. At this time, the SEI began working of these
issues with industry customers, including Motorola, HP, Avaya (Lucent at the time), and other
early adopters.

 The SEI Contribution

Compared to other approaches to domain analysis, the SEI’s FODA was a lightweight approach
that could be applied in two to three weeks. The DARPA STARS program also developed a do-
main analysis approach, but it required more effort and was more time consuming. The SEI advo-
cated moving quickly from FODA on to requirements, architecture, and implementation, prefer-
ring that domain analysis feed downstream activities. This methodology evolved into what is now
known as commonality/variation design, and then architecture-component variation points, in cur-
rent product line practice.

Others at the time were working on object-oriented design, building a set of classes and a class
hierarchy once and then having everyone in the software development organization use these clas-
ses for all the systems they built. Object-oriented design, the principal mechanism at the time for
achieving reuse, was undermined by variation and an inability by organizations to control the pro-
liferation of subclasses, which effectively prevented widespread reuse. As the product line con-
cept began to mature, the software community began to recognize the need for domain analysis.

Many other systems and methods have been built around the FODA model. David Weiss and Chi
Tau Robert Lai wrote a textbook in 1999 called Software Product Line Engineering: A Family-
Based Software Development Process [Weiss 1999]. The methodology described therein, known
as commonality variability analysis, examined, for example, organizational commonality in provi-
sioning, configuration management, and billing operations. It was broader than domain analysis,
but similar, and there were cross-influences between Weiss and the SEI.

In 2000, Krzysztof Czarnecki [Czarnecki 2000] worked on automatic software generation that
was built on FODA models or variation models. Around the same time, in early 2002, a company
in Germany called Pure Systems developed a tool to manage variation and feature modeling. Pure
Systems had been working in configuration management and moved into feature modeling. Also
around that time, Charles Kreuger of Big Lever developed Gears, which had built into it the fea-
ture concept. Gears also applied to configuration management and mass customization—a lot of

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 264
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

small components could be integrated in different ways, with integration guided by what things
were common, how the common pieces fit together, and what were the variations.

The principal contribution of the SEI in developing FODA was to demonstrate that to achieve re-
use, simply identifying common elements and features is insufficient. To succeed, reuse requires a
more systematic identification of commonality and variation, how things vary, and where they
vary; and then variation must be planned in advance, anticipating and planning for changes that
are likely to occur. Managing variation was the main emphasis in FODA that distinguished it
from other methodologies.

The preponderance of tools that perform domain analysis (80-90 percent) use FODA as a starting
point. They all use the alternative and optional kinds of features and may add information that the
SEI did not account for, but all are built around the model that the SEI developed.

 References

[Czarnecki 2000] Czarnecki, K. & Eisenecker, U. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000 (ISBN 0201309777).

[GAO 1993] General Accounting Office. Software: Major Issues Need to Be Resolved Before
Benefits Can Be Achieved (GAO/IMTEC-93-16). General Accounting Office, 1993.

[Kang 1990] Kang, Kyo; Cohen, Sholom; Hess, James; Novak, William; & Peterson, A. Feature-
Oriented Domain Analysis (FODA) Feasibility Study (CMU/SEI-90-TR-021). Software Engineer-
ing Institute, Carnegie Mellon University, 1990. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=11231

[Weiss 1999] Weiss, David M. & Lai, Chi Tau Robert. Software Product Line Engineering: A
Family-Based Software Development Process. Addison-Wesley Professional, 1999 (ISBN
0201694387).

[Williamson 2005] Williamson, John. “Army Tactical Command and Control System (ATCCS)
(United States), Systems,” 673. Jane’s Military Communications 2005–06, 26th Edition. John
Williamson, ed. Janes Information Group, 2005 (ISBN 0710626991).

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 265
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Software Product Lines

 The Challenge: Achieve Reuse That Pays

Software reuse has been a topic of interest and discussion since the first conference on software
engineering that was held by NATO in Garmisch, Germany, in 1968 [McIlroy 1969]. Most organ-
izations build families of similar systems and so it makes sense to pursue economies of scale.
Early forays into reuse were confined to code, functions, and procedures. Later, the development
of the Ada programming language and the wave of object-oriented languages provided the ability
to reuse packages of functionality and software components.

However, experience proved that the reuse of code-level elements did not provide the desired eco-
nomic advantages; such reuse did little to reduce the principal sources of expense in software de-
velopment. The major expense of software development lies in the process of defining require-
ments and structuring a solution, as well as in all the other non-code artifacts such as test cases,
business artifacts, and the architecture that defines how software elements fit together. To achieve
reuse that provides substantial return on investment—reuse that pays, or strategic reuse—a com-
prehensive approach was needed that would involve more than just reusing pieces of code or ser-
endipitously discovering artifacts in a library to reuse.

 A Solution: Software Product Lines

Predominantly, strategic reuse capitalizes on commonality—common features—and manages var-
iation. When multiple similar products are developed, there is some degree to which they are the
same, but also some degree to which they vary. Economic advantage is achieved through a sys-
tematic product line approach that effectively manages this variation. A software product line is
“a set of software-intensive systems that share a common, managed set of features satisfying the
specific needs of a particular market segment or mission and that are developed from a common
set of core assets in a prescribed way” [Clements 2001]. Creating a software product line depends
on establishing a software architecture, or product line architecture, for the entire set of systems;
and software architecture was only beginning to receive attention at that time.

By the 1980s, diverse areas, such as automobiles, aircraft, machine tools, and, more recently,
computer hardware, were using the concept of a product line; but applying that concept to a soft-
ware product line was not common practice. The SEI was influenced to begin its formal investiga-
tion into software product lines by a number of related SEI experiences and by DoD and commer-
cial attempts to create software product lines in the late 1980s and early 1990s. The SEI had
developed a reference architecture for the B-2 simulator that was later applied to other simulators.
The DARPA STARS program was experimenting with the development of software product lines
[STARS 1983]. AFSC/ESD initiated the PRISM project to experiment with the definition of a
product line approach to the development of command centers. There were also a number of com-
mercial industry efforts to define a software product line, most notably by CelsiusTech Systems
AB.

The SEI launched a full-scale investigation into software product lines, the Product Line Practice
Initiative. The SEI vision was that product line development would become a low-risk, high-re-
turn proposition for all organizations—techniques for finding and exploiting system commonali-
ties and for controlling variability would be standard practice in the DoD, government, and indus-
try. The SEI aimed to facilitate and accelerate that transformation. The SEI strategy was to first

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 266
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

understand the basis for product line success that was starting to occur in the commercial space,
and then to build on that innovation and, ultimately, transition knowledge and results to the DoD.

In 1996, the SEI convened the first of what was to become a series of workshops to learn more
about the state of product line practices. Organizations attending the first workshop included Cel-
siusTech, Robert Bosch GmBH, Schlumberger, Philips Laboratories, Caterpillar, and the U.S.
Army [Bass 1997, 1998, 1999]. The SEI became an active participant in a similar set of work-
shops occurring in Europe that were funded by the European Union as part of research projects
focused on product families. In 1998, the SEI held the
first of a series of DoD Product Line Workshops to
share successful product line practices and identify
DoD-specific challenges to strategic reuse [Bergey
1998].62

The SEI also engaged directly with DoD organizations
that were attempting product line efforts. The National
Reconnaissance Office (NRO), the Joint National Test
Facility, the U.S. Army Special Operations Aviation
Technical Application Program Office, the F-22 Pilot
Training Program, and the Army’s Force XXI Battle
Command Brigade and Below (FBCB2) Program were among the many to be successful. The
NRO’s Control Channel Toolkit (CCT) was a software asset base for ground-based spacecraft com-
mand-and-control systems that was completed on schedule and within budget, with no outstanding
risks or actions. The first system in this product line experienced a 50 percent reduction in overall
cost and schedule and nearly tenfold reductions in development personnel and defects [Clements
2001, Section 10].

Key contributions by the SEI to the discipline of product line practice, created to support the
adoption of software product lines, include the following:
• Framework for Software Product Line Practice. Stemming from the SEI’s immersion in

the product line community, its applied research, collaborations with DoD and commercial
organizations, and participation in workshops, and conferences, the SEI developed the web-
based Framework for Software Product Line Practice as a reference model that describes the
technical, management, and business practices essential for software product lines. The
framework was intended to be a complete and thorough reference model for every aspect of
product line practice, as opposed to a development model or roadmap. The last revision of the
framework took place in 2006. There was also an Acquisition Companion to the framework
that described the practices from the view of a government acquisition organization.

• Software Product Lines: Practices and Patterns [Clements 2001]. This was the first book on
software product lines, and includes the framework, product line case studies, and a set of pat-
terns that aimed to help organizations achieve results with the practices.

62 Reports on subsequent workshops can be found in the digital library on the SEI website (http://re-

sources.sei.cmu.edu/library/). All were written by Bergey as primary author except one, by S. Cohen.

The View from Others

COM SEC will benefit greatly
from the growth in technology
awareness and process improve-
ment resulting from the support
provided by the SEI.

– Advanced Multiplex Test
System, CECMOM Army

http://re-sources.sei.cmu.edu/library/
http://re-sources.sei.cmu.edu/library/

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 267
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

• A software product line curriculum. A series of four courses, an executive seminar, and a
product line acquisition tutorial were developed and delivered to more than 3,500 individuals
from major defense contractors, the DoD, and commercial organizations.

• Software Product Line Conference (SPLC). Begun by the SEI in 2000, when more than
100 people attended, SPLC merged in 2004 with its European counterpart, the Product Fam-
ily Engineering Workshop. Since then, SPLC has always attracted an international audience
of 150-200 researchers and practitioners.

• Structured Intuitive Model for Product Line Economics (SIMPLE). This comprehensive
cost model for software product lines aids the development of a business case.

• Product Line Analysis. This approach combined domain understanding and requirements
engineering for product lines to identify opportunities for large-grained reuse.

• Product Line Technical Probe (PLTP). This method supports gathering information about
an organization’s readiness to adopt or ability to succeed with a product line approach. The
Product Line Quick Look (PLQL) was a lighter weight version.

• Product Line Production Plan [Chastek 2002]. This describes how to specify the technical
approach for how core assets are to be used to develop a product in a product line.

• Product Line Adoption Roadmap [Northrop 2004]. This provides a generic roadmap to
guide a manageable, phased product line adoption strategy.

 The Consequences: Product Line Use Expands and Provides Benefits

Companies such as Cummins, Nokia, Hewlett Packard, Philips, Robert Bosch, Raytheon, General
Motors, NCR, Intuit, ABB, Siemens, Panasonic, Boeing, Rockwell Collins, General Dynamics, and
Northrop Grumman are among a growing number of organizations using SEI materials and methods
to support their product line practices. They report benefits that include 60 percent cost reduction,
decreased time to market by as much as 98 percent as compared with their past experience, and the
ability to move into new markets in months rather than years [Pohl 2005, Clements 2001].

Defense examples include the Army Training Support Center (ATSC), Advanced Multiplex Test
System, Army’s Common Avionics Architecture System (CAAS) Product Line, Textron Over-
watch Intelligence Center Software Product Line, the Live, Virtual, Constructive Integrating Ar-
chitecture (LVCIA) product lines at Army PEO/STRI, and BAE’s Diamond software product line
[Jones 2010].

 The SEI Contribution

As with SEI efforts in other areas, the SEI was not the only contributor to the notions of software
product lines, but was an early leader and a significant contributor to the discipline and maturation
of the practice. The international engagement with and continued success of the Software Product
Line Conference, as well as the pervasive use of software product line practices in government
and industry is evidence of the continuing impact of this SEI work.

 References

[Bass 1997] Bass, Len; Clements, Paul; Cohen, Sholom; Northrop, Linda; & Withey, James.
Product Line Practice Workshop Report (CMU/SEI-97-TR-003). Software Engineering Institute,

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 268
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Carnegie Mellon University, 1997. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=12815

[Bass 1998] Bass, Len; Chastek, Gary; Clements, Paul; Northrop, Linda; Smith, Dennis; &
Withey, James. Second Product Line Practice Workshop Report (CMU/SEI-98-TR-015). Soft-
ware Engineering Institute, Carnegie Mellon University, 1998. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?AssetID=13147

[Bass 1999] Bass, Len; Campbell, Grady; Clements, Paul; Northrop, Linda; & Smith, Dennis.
Third Product Line Practice Workshop Report (CMU/SEI-99-TR-003). Software Engineering In-
stitute, Carnegie Mellon University, 1999. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=13347

[Bergey 1998] Bergey, John; Krut, Jr., Robert; Clements, Paul; Cohen, Sholom; Donohoe, Pat-
rick; Jones, Lawrence; Northrop, Linda; Tilley, Scott; Smith, Dennis; & Withey, James. DoD
Product Line Practice Workshop Report (CMU/SEI-98-TR-007). Software Engineering Institute,
Carnegie Mellon University, 1998. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=13069

[Chastek 2002] Chastek, Gary; & McGregor, John. Guidelines for Developing a Product Line
Production Plan (CMU/SEI-2002-TR-006). Software Engineering Institute, Carnegie Mellon Uni-
versity, 2002. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6067

[Clements 2001] Clements, Paul; & Northrop, Linda. Software Product Lines: Practices and Pat-
terns. Addison-Wesley, 2001 (ISBN 0201703327).

[Kang 1990] Kang, K.; Cohen, S.; Hess, J.; Novak, W.; & Peterson, A. S. Feature-Oriented Do-
main Analysis (FODA) Feasibility Study (CMU/SEI-90-TR-021). Pittsburgh, PA: Software Engi-
neering Institute, Carnegie Mellon University, 1990.

[Jones 2010] Jones, L.; & Northrop, L., “Recent Experiences with Software Product Lines in the
US Department of Defense.” Software Product Line Conference 2010, Jeju Island, South Korea,
September 13-17, 2010.

[McIlroy 1969] McIlroy, Malcolm Douglas. “Mass Produced Software Components,” 29. Soft-
ware Engineering: Report of a Conference Sponsored by the NATO Science Committee,
Garmisch, Germany, 7-11 October 1968. Scientific Affairs Division, NATO, 1969.

[Northrop 2004] Northrop, Linda. Software Product Line Adoption Roadmap (CMU/SEI-2004-
TR-022). Software Engineering Institute, Carnegie Mellon University, 2004. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=7237

[Pohl 2005] Pohl, Klaus; Bockle, Gunter; & van der Linden, Frank. Software Product Line Engi-
neering: Foundations, Principles, and Techniques. Springer, 2005 (ISBN 3540243720).

[STARS 1983] “Software Technology for Adaptable, Reliable Systems (STARS) Program Strat-
egy.” ACM SIGSOFT Software Engineering Notes 8, 2 (April 1983): 56-108 (DOI
10.1145/1005959.1005966). http://doi.acm.org/10.1145/1005959.1005966

http://doi.acm.org/10.1145/1005959.1005966
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=12815
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=12815
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=13147
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=13147
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=13347
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=13347
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=13069
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=13069
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6067
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=7237
http://re-sources.sei.cmu.edu/library/asset-view.cfm?AssetID=7237

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 269
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

8 Forensics

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 270
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 271
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Figure 8: Forensics Timeline

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 272
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 273
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Introduction to Computer Forensics: Digital Intelligence and
Investigation

In the early days of the internet, protection against cyber attacks was not a high priority for the re-
searchers using it. Cybersecurity became more important with the expansion into commercial and
international internet use. At the same time, attacks became more sophisticated and the demand
for cyber forensics experts increased. In the 1980s and 1990s, computers were the objects of
crimes, and investigative procedures were straightforward. Techniques and policies focused on
computer drives, which investigators inspected in their entirety. Some commercial tools were
available to facilitate their work. Investigators were self-taught as formal training had not yet been
developed.

A series of changes rendered this early approach ineffective. Rather than being the objects of
crimes, computers were used to facilitate crimes. The technology itself changed; computers were
able to store massive amounts of data, and some technology did not even exist in the 1990s—
cloud computing, for example. Crimes were committed by entities such as nation-states and not
just individuals. Criminals were often sophisticated technical experts; for example, individuals
with PhDs in computer science “gone rogue.” Many attacks were so complex and large in scope
that the commercial tools became ineffective. As both dependence on the internet and the sophis-
tication of attackers grew, law enforcement investigators faced many challenges, including a huge
backlog of computers waiting for analysis, a growing volume of digital evidence, and attackers’
use of encryption. The investigators needed highly technical training and more effective tools and
techniques.

 SEI Entry into Digital Intelligence and Investigation

The SEI became involved in forensics in response to the August 2003 U.S. Northeast blackout
and, subsequently, expanded its operational support for investigations into cyber attacks. With the
hiring of a former law enforcement professional, the SEI established a separate team, with the for-
mer law enforcement agent as the team lead.

The SEI was in a good position to provide support to law enforcement investigators and help them
meet their challenges. Through the CERT/CC, SEI researchers had experience with responding to
computer security compromises, with vulnerabilities and ways they could be exploited, and with
malicious code. Through the malicious code work, in particular, the SEI had well-established,
trusted relationships with law enforcement agencies.

 Evolution of the SEI Approach

The SEI continued to gain operational experience by assisting federal law enforcement agents
with their cases. One example is the Iceman case. A former computer security consultant, Max
Ray Butler (also known as the Iceman), attacked computers at financial institutions and credit
card processing centers, stealing account information and selling the data to others. Federal law
enforcement agents enlisted the SEI’s assistance in acquiring and decrypting the Iceman’s data,
thus providing critical evidence for the case that resulted in a three-year sentence for wire fraud
and identity theft, plus five years of supervised release and $27.5 million in restitution payments
to victims [Mills 2009, McMillan 2010].

https://collaboration.sei.cmu.edu/sites/Security/SecurityChapter/2-CERT-CC140109.docx
https://collaboration.sei.cmu.edu/sites/Security/SecurityChapter/2-CERT-CC140109.docx
https://collaboration.sei.cmu.edu/sites/Security/SecurityChapter/3-VulAnalysis140109.docx
https://collaboration.sei.cmu.edu/sites/Security/SecurityChapter/4-MaliciousCode140117.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/2-DIIDoperationsuppport140210.docx

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 274
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

In supporting law enforcement cases, the SEI identified gap areas not addressed by commercial
tools or commonly used techniques. With the goal of preserving evidence and presenting it in a
way that leads to the apprehension of the criminals, the SEI developed tools, analysis methods,
and processes that enable comprehensive and efficient analysis of evidence for use in cybercrime
cases.

Cases involve large amounts of data and important volatile data. As a first step toward addressing
the need to extract and understand the data quickly, the SEI developed the CERT LiveView
tool.63 To deal with the increasing use of strong encryption of data on seized computers, the SEI is
developing ways to adapt the data acquisition process and recover encrypted data. SEI-developed
technologies, tools, and practices have resulted in previously unattainable results for national and
international cybercrime investigations. As a major advance, the Department of Justice influenced
the federal government to accept evidence from SEI technology as being admissible in court
cases.

By continuing to provide operational support to high-profile intrusion, identity theft, and general
computer crime investigations, the SEI is able to see the changing limitations of computer foren-
sics and incident response in the field first-hand. Combining this applied research with the talents,
operational experience, research capabilities, and the extensive knowledge base of Carnegie
Mellon University, the SEI will remain unmatched in its ability to develop new tools and methods
to address cybersecurity limitations and critical gaps.

 Influence on the State of the Practice

The continuing SEI digital intelligence and investigation advances are used primarily by law en-
forcement. In addition, the SEI makes some tools available to system administrators through the
web.64 With the SEI tools and techniques, system administrators can identify malicious activity and
establish a chain of evidence. As a result, criminals may be stopped before they cause more damage.

To increase the government’s capability to deal with attacks, the SEI provides training to federal,
state, local, and international law enforcement agencies in the use of its tools and techniques. The
staff also teaches an SEI course on forensic response and analysis65 and presents courses in the
Cyber Forensics and Digital Response track at Carnegie Mellon’s Information Networking Institute
(INI), which offers certification in digital forensics.66 The CERT STEPfwd training environment in-
cludes demonstrations that show how to use some of the SEI-developed digital investigation tools.

 Keeping Up with Changes in Cybercrime

Now the SEI assists in the pursuit of cybercriminals and develops tools and methods that both
prevent and combat cybercrime. Future research and development will enable the SEI to keep up
with changing technology, risks, attacks, and federal law enforcement and incident responders’
needs. Operational support will help ensure that the SEI is focusing on essential gap areas. The

63 See http://liveview.sourceforge.net

64 See http://www.sei.cmu.edu/digitalintelligence/tools

65 A course description can be found at http://www.sei.cmu.edu/training/P103.cfm

66 For information about INI, and its Pittsburgh programs in particular, see http://www.ini.cmu.edu

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/3-DIIDimprovedpractices140214.docx
https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/3-DIIDimprovedpractices140214.docx
https://collaboration.sei.cmu.edu/sites/Education_Training/EducationChapter/11-%20Cyber%20Workforce%20131011.docx
http://www.sei.cmu.edu/digitalintelligence/tools
http://liveview.sourceforge.net
http://www.sei.cmu.edu/training/P103.cfm
http://www.sei.cmu.edu/training/P103.cfm

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 275
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

ultimate contribution of SEI digital intelligence and investigation work is that it makes cyberspace
safer for government, critical infrastructure operators, other industries, and individuals to conduct
their essential activities.

 References

[McMillan 2010] McMillan, Robert. “Criminal Hacker ‘Iceman’ Gets 13 Years.” Computer-
World, 2012. http://www.computerworld.com/s/article/9156658/Criminal_hacker_Ice-
man_gets_13_years (2012).

[Mills 2009] Mills, Elinor. “‘Iceman’ Pleads Guilty in Credit Card Theft Case.” CNET. 2009.
http://news.cnet.com/8301-1009_3-10275442-83.html (2009).

[Nolan 2005a] Nolan, Richard; O’Sullivan, Colin; Branson, Jake; & Waits, Cal. First Responders
Guide to Computer Forensics (CMU/SEI-2005-HB-001). Software Engineering Institute, Carne-
gie Mellon University, 2005. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7251

[Nolan 2005b] Nolan, Richard; Baker, Marie; Branson, Jake; Hammerstein, Josh; Rush, Kristo-
pher; Waits, Cal; & Schweinsberg, Elizabeth. First Responders Guide to Computer Forensics:
Advanced Topics (CMU/SEI-2005-HB-003). Software Engineering Institute, Carnegie Mellon
University, 2005. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7261

http://www.computerworld.com/s/article/9156658/Criminal_hacker_Ice-man_gets_13_years
http://www.computerworld.com/s/article/9156658/Criminal_hacker_Ice-man_gets_13_years
http://news.cnet.com/8301-1009_3-10275442-83.html
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7251

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 276
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Operational Support for Digital Intelligence and Investigation

 The Challenge: Catching and Convicting Perpetrators of Cyber Attacks

Attacks on internet-connected systems put government, business, and consumers at risk. The na-
ture of the internet makes their networked systems and the information on them vulnerable to
compromise. At first, computers were the objects of attacks. Law enforcement investigators could
examine all the data on a hard drive and had commercial tools to assist them. Now computers are
used to facilitate crime, and the traditional tools and methods cannot keep up with the velocity of
investigations, preventing law enforcement agents from establishing timely leads. The attackers
are sophisticated and the attacks are complex. Their targets include the Department of Defense
and other federal computers, commercial organizations, educational institutions, and critical U.S.
infrastructure. Huge volumes of data are involved, more data than an investigator could examine
in its entirety even with the commercially available tools. Complicating the investigation are vola-
tile data and criminals’ use of encryption. Law enforcement investigators need tools, techniques,
and training that enable them to extract important data, analyze it, and catch the perpetrators. Ad-
ministrators of attacked systems need to be able to identify intrusions and recover from attacks
while preserving the chain of evidence that leads to the attackers’ arrest and conviction.

 A Solution: Tools and Techniques for Digital Investigations

The SEI became involved in forensics in response to the August 2003 U.S. Northeast blackout
and, subsequently, expanded its operational support for investigations into cyber attacks. From the
start, SEI experts have focused on how to preserve evidence and present it in a way that leads to
the apprehension of the criminals, and their approach has included comprehensive and efficient
analysis of evidence, supported by technology and tools. The SEI continues to identify gap areas
to address while supporting law enforcement operations such as these:

• The SEI assisted an investigation of the theft of more than 90 million credit and
debit card numbers from T.J. Maxx, Marshall’s, Barnes & Noble, OfficeMax, and
other major retailers [Houser 2008]. Referred to as the TJX case, the theft occurred
in 2005 and constituted one of the largest instances of credit card fraud and identity
theft in history [Moore 2010]. While assisting with law enforcement’s analysis, the
SEI developed a new tool for recovering and organizing credit card numbers from
digital evidence. Two SEI staff members received the U.S. Secret Service Director’s
Recognition Award for their contributions to the TJX case. U.S. representatives also
recognized the team’s efforts during a visit to Carnegie Mellon University
[FedNews 2008]. Eleven individuals were indicted in 2008 for the data breach, in-
cluding the leader, Albert Gonzales. The government claimed in its sentencing
memo that companies, banks, and insurers lost close to $200 million and that Gon-
zalez’s credit and debit card thefts “victimized a group of people whose population
exceeded that of many major cities and some states” [Zetter 2010].

• A similar attack by the same perpetrators occurred in the Heartland case [Barrett
2009]. The SEI assisted the U.S. Secret Service with investigation into intrusions
and credit and debit card theft at Heartland, Hannaford Bros., 7-Eleven, and three
other retailers. The leader, Albert Gonzales, and two Russian accomplices were in-
dicted in August 2009. Gonzales, who led both major attacks, received two 20-year
sentences and was required to make restitution to victims.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 277
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

The SEI’s experience with cases such as these gives its forensics experts first-hand knowledge of
the needs of the law enforcement community. They develop tools, analysis techniques, and pro-
cesses that meet a real need in the field. They also provide guidance to management on policies
and practices [Waits 2007].

 The Consequence: Cyber Attackers Are Caught and Prosecuted

Because of the SEI’s involvement, along with the tools and techniques it develops, law enforce-
ment investigations are more efficient and effective. Criminals such as Gonzales are convicted of
their crimes, paying retribution and serving time in prison. In a major step forward, the federal
government now accepts evidence from SEI technology
as being admissible in court cases. In addition, system
administrators know how to identify malicious activity
and establish a chain of evidence. As a result, criminals
may be stopped before they cause more additional dam-
age, and the evidence holds up in court. Criminals are
convicted, preventing them from attacking the networks
of the DoD, federal government, commercial endeavors,
and critical infrastructures.

 The SEI Contribution

The SEI develops tools and analysis techniques (de-
scribed further in another section) and uses them operationally to assist the Secret Service and
other law enforcement agencies to convict perpetrators of cybercrimes. In 2011, the SEI provided
advanced analytical support for 147 federal investigations. Depending on the needs of each case,
they may support digital investigations by collecting data, addressing encryption and configura-
tion issues on attackers’ computers, creating forensic images for analysis, assisting with analysis,
and even testifying in court if required. Because the SEI shares knowledge and tools and provides
training, both law enforcers and system administrators have greater skills, leading to the convic-
tion of more criminals.

 References

[Barrett 2009] Barrett, Devlin. “‘Soupnazi’ Albert Gonzales: Jailed Miami Man Hacked into 130
Million Credit Card Accounts: Prosecutors.” http://www.huffingtonpost.com/2009/08/17/prosecu-
tors-jailed-miami_n_261378.html (2009).

[FedNews 2008]. “CMU Software Engineering Institute Recognized by Reps. Murtha, Doyle, and
Altmire.” U.S. Fed News press release 2008.

[Houser 2008] Houser, Mark. “CERT Helped U.S. Crack International ID Theft Case.” Tribune-
Review, 2008. http://triblive.com/x/pittsburghtrib/news/educa-
tion/s_586552.html#axzz3GPsgTRg8 (2008).

[Moore 2010] Moore, Kevin. “TJX and Heartland: The Role of the CERT Forensics Team” (pod-
cast). Software Engineering Institute, Carnegie Mellon University, 2010. www.cert.org/pod-
casts/podcast_episode.cfm?episodeid=34383 http://resources.sei.cmu.edu/library/asset-
view.cfm?assetID=30936

The View from Others

The SEI continues to be an inte-
gral partner in the Secret Service’s
efforts to combat cybercrime and
protect the nation’s critical finan-
cial infrastructure.

– Tom Dover, U.S.
Secret Service
[SEI 2009]

https://collaboration.sei.cmu.edu/sites/SEIhistory/Process%20for%20the%20book%20creation/3-DIIDimprovedpractices140214.docx
http://www.huffingtonpost.com/2009/08/17/prosecu-tors-jailed-miami_n_261378.html
http://www.huffingtonpost.com/2009/08/17/prosecu-tors-jailed-miami_n_261378.html
http://triblive.com/x/pittsburghtrib/news/educa-tion/s_586552.html#axzz3GPsgTRg8
http://triblive.com/x/pittsburghtrib/news/educa-tion/s_586552.html#axzz3GPsgTRg8
http://www.cert.org/pod-casts/podcast_episode.cfm?episodeid=34383
http://www.cert.org/pod-casts/podcast_episode.cfm?episodeid=34383
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=30936
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=30936

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 278
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

[SEI 2009] SEI Year in Review. Software Engineering Institute, Carnegie Mellon University,
2009. http://resources.sei.cmu.edu/asset_files/AnnualReport/2010_001_001_30135.pdf

[Waits 2007] Waits, Cal. “Computer Forensics for Business Leaders: Robust Policies and Prac-
tices” (podcast). Software Engineering Institute, Carnegie Mellon University, 2007. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?assetID=34414

[Zetter 2010] Zetter, Kim. “TJX Hacker Gets 20 Years in Prison.” Wired. March 25, 2010.
http://www.wired.com/threatlevel/2010/03/tjx-sentencing (2010).

http://resources.sei.cmu.edu/asset_files/AnnualReport/2010_001_001_30135.pdf
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetID=34414
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetID=34414
http://www.wired.com/threatlevel/2010/03/tjx-sentencing

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 279
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Digital Intelligence and Investigation Methods and Tools

 The Challenge: Effective and Efficient Cyber Forensics

Traditional approaches are insufficient for investigating crimes committed through computers.
Early digital forensic tools and techniques were helpful when the amount of data stored on com-
puters could be examined fully; however, they became insufficient when the scope, frequency,
and complexity of cybercrimes significantly increased. As a result, federal law enforcement agen-
cies soon faced a backlog of digital evidence to analyze and a volume of data that could not be ex-
amined effectively with the commercial tools available. The attacks they now investigate have be-
come more complex and are perpetrated by sophisticated attackers, who often use encryption and
other means to obscure their activities. Additionally, system administrators need to understand at-
tacks on their systems and preserve evidence in a way that holds up in court.

 A Solution: Tools and Methods that Improve the State of the Practice

The SEI forensics experts develop highly specialized computer forensics and incident response
“gap area” tools and practices not addressed by commercial tools or standard techniques (see the
report by Waits [Waits 2008], for example) and provide them to the DoD and U.S. federal civilian
law enforcement agencies. Thus, the SEI equips federal law enforcement investigators to effi-
ciently and effectively handle cyber attacks, from collecting evidence to apprehending and con-
victing the perpetrators. Because SEI forensics experts work on incidents involving national secu-
rity and assist with large-scale criminal cases, they gain the essential field experience that helps
them identify the areas that need to be addressed, and their close working relationship with law
enforcement gives them the insight they need to focus their efforts.

Because the scale of incidents and the amount of data prevents investigators from examining all
data, the SEI has identified triage strategies and automated tools for computer and data acquisition
that result in actionable information and evidence that has proven to hold up in court. Because a
criminal can commit a crime and disappear before traditional response approaches can be imple-
mented, the SEI identifies techniques for rapid response without jeopardizing sensitive data. The
SEI developed its first forensics support tool, Aperio, in 2004-2005. By 2012, six tools were
freely available to system administrators, with an additional four provided to law enforcement
only.67 In addition, the SEI established and maintains a repository of Linux forensics tools68 that
are packaged for easy download and installation by any practitioner who must acquire and ana-
lyze data. Other SEI advances include rapid triage and correlation of malicious code and network
logs/traffic; new technologies to improve DoD investigators’ collection of intelligence from re-
covered media; new methods and techniques for forensic imaging of solid state drives; and tools
for image and video analysis.

The SEI developed the CERT Clustered-Computing Analysis Platform (C-CAP), a technological
advance to address the need for forensics law enforcement analysts to work together on cases,
even if they are geographically dispersed. SEI developers integrated access to a comprehensive
array of analytical tools and resources. C-CAP is centrally managed, so platform resources can be

67 Tool descriptions can be found at http://www.sei.cmu.edu/digitalintelligence/tools

68 See http://www.cert.org/digital-intelligence/tools/linux-forensics-tools-repository.cfm

http://www.sei.cmu.edu/digitalintelligence/tools
http://www.sei.cmu.edu/digitalintelligence/tools

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 280
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

allocated rapidly and can be flexibly and securely reassigned on demand. The resources are scala-
ble, so that functionality, storage, and processing power can meet changing demands.

The SEI has developed training to help practitioners use its tools, techniques, and processes effec-
tively in the field, further increasing the government’s ability to apprehend and convict criminals.
In addition, the SEI staff worked with Carnegie Mellon University’s Information Networking In-
stitute (INI) to define and teach in a master’s-level curriculum in digital forensics [Rush 2010],
which is described on the INI website.69

 The Consequence: Cyber Criminals Are Caught Early and Prosecuted

As a result of SEI forensics research, gap area tool development, and training, the DoD and fed-
eral agencies have an increased capability to deal with cyber attacks. Law enforcement investiga-
tors can effectively collect and analyze evidence that helps them catch and convict criminals; the
forensics investigators and analysts have an enhanced ability to rapidly identify the method,
source, and impact of cyber attacks.

Supporting their cases are system administrators who know how to preserve the chain of evidence
as they use SEI tools to understand malicious activity on their systems and collect evidence that is
usable in court. By identifying malicious activity and establishing a chain of evidence, system and
network administrators may stop criminals before they cause additional damage. They use SEI
tools to examine their systems following an intrusion even while attackers continue to find more
sophisticated ways to hide their actions. They have a greater ability to preserve evidence while re-
storing their systems.

Through C-CAP, analysts and investigators enjoy flexible, secure access to high-performance sys-
tems, increasing productivity and enabling collaboration.

A significant consequence of SEI work is that the Department of Justice has approved several SEI
technologies as being admissible in court cases. As a side effect, the acceptance of evidence from
SEI tools has led to an increased demand for the tools and for C-CAP, thus further improving the
forensic capacity of government law enforcement agencies. In 2013, there were more than 20,300
downloads of SEI-developed forensics analysis tools. In addition, there has been a total of
200,000 individual downloads of LiveView alone since it was released as the first tool in 2006.
The ultimate consequence of SEI research and development is the imprisonment of cybercrimi-
nals, affecting national security, and a safer internet environment for DoD, federal agencies, and
U.S. businesses.

 The SEI Contribution

The SEI is filling gaps in techniques and tools not addressed by traditional forensics techniques
and the commercial tools that support law enforcement analysts. Because of the close relationship
with law enforcement, the SEI can identify areas that directly address the agencies’ needs. The
SEI focuses on core issues facing the law enforcement agencies, such as the need to process large
amounts of data quickly. By concentrating on the core issues, the SEI is able to create solutions

69 See http://www.ini.cmu.edu/degrees/

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 281
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

that not only apply to the specific cases but can be amplified for broader use. To explore alterna-
tive solutions, SEI experts have collaborated with researchers in Carnegie Mellon’s School of
Computer Science, Robotics Institute, Department of Electrical and Computer Engineering, and
the CyLab Biometrics Center.

The major SEI contribution is the increased ability to convict cybercriminals. The three largest
cases prosecuted by the U.S. Department of Justice were direct results of SEI technology that sup-
ports law enforcement analysts.

 References

[Rush 2010] Rush, Kristopher. “Computer and Network Forensics: A Master’s Level Curriculum”
(podcast). Software Engineering Institute, Carnegie Mellon University, 2010. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?assetID=34391

[Waits 2008] Waits, Cal; Akinyele, Joseph; Nolan, Richard; & Rogers, Lawrence. Computer Fo-
rensics: Results of Live Response Inquiry vs. Memory Image Analysis (CMU/SEI-2008-TN-017).
Software Engineering Institute, Carnegie Mellon University, 2008. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?AssetID=8605

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8605
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8605
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetID=34391
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetID=34391

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 282
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 283
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

9 The Future of Software
Engineering

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 284
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 285
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 A Vision of the Future of Software Engineering

 Software and Defense

In the years since the SEI was founded, the Department of Defense has become dramatically more
reliant on software in all phases of the DoD mission. Software is a critical building material for
major systems of all kinds. Considering the pervasiveness of its role, it is perhaps the most strate-
gically significant of all materials that contribute to modern defense systems.

The increase in the role and criticality of software is well documented in multiple studies by the
Defense Science Board (DSB) and the National Research Council (NRC) at the National Acade-
mies.70 This increased dependency is evident in the reported tenfold growth in the number of lines
of software code produced every decade. There are good reasons for this growth: software is
uniquely unbounded and flexible; can be delivered and upgraded electronically and remotely; and
has the potential for rapid adaptation to changing threats, coalition structure and mission environ-
ment, and technological infrastructure. That is, software, uniquely, enables defense program man-
agers and sustainment teams to adapt rapidly to changes in their missions, as well as to opportuni-
ties afforded by rapid advances in the computing and communication infrastructure. In addition to
emerging as the most compelling medium for embodying complex functionality, software has be-
come the critical medium of interoperation and interconnection among systems. These advances
in software capability have a broad and deep significance throughout the DoD and its supply
chain.

Along with the rapid growth in the role of software in DoD systems, there is rapid evolution in the
technology and practices associated with software, which is increasing rather than diminishing. It
is dangerous to think that software technology is somehow approaching a plateau in role and ca-
pability. The lack of a plateau is evident in recent developments in technology and practice—ex-
amples include big data frameworks, machine learning tools, advanced framework-and-apps ar-
chitectures, safe programming languages, cyber-physical architectures, resilient architectures,
software-assurance analytics, design modeling, cost estimation, agile practices, and the like. As
software-related technology evolves, organizations and nations that are deeply reliant on software
capability must take an active role in engaging with the technology and the technology ecosystem,
lest they fall behind their competitors and adversaries.

70 Principal related studies from the National Research Council include Critical Code: Software Pro-

ducibility for Defense (2010), Achieving Effective Acquisition of Information Technology in the De-
partment of Defense (2010), Software for Dependable Systems: Sufficient Evidence (2007), and
Toward a Safer and More Secure Cyberspace (2007). Principal related reports of Defense Science
Board Task Forces include Mission Impact of Foreign Influence on DoD Software (September
2007), Defense Software (November 2000), Resilient Military Systems and the Advanced Cyber
Threat (January 2013), Acquiring Defense Software Commercially (June 1994), and Military Soft-
ware (September 1987).

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 286
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 The SEI Role

The SEI works with diverse organizations within the DoD—and also in other agencies and in the
DoD supply chain—to leverage the rapid changes in software technology to support diverse facets
of the mission at all stages of the lifecycle, including development, assurance, and sustainment for
cyber-enabled missions. In its FFRDC role, the SEI develops methods to manage risk, cost,
schedule, quality, security, and complexity of software-reliant systems. The SEI works throughout
the software supply chain, including with prime government contractors, their subcontractors,
supporting vendors, open-source foundations, government labs, other FFRDCs, and researchers.
Through these relationships, the SEI learns how the DoD can both make the best use of and also
facilitate the advance of DoD-essential technologies that are emerging in the commercial sector,
as well as the new technologies that are still being evaluated in the lab.

A key challenge in the shifting software landscape is that advances in software technology and
practice consist of much more than incremental enhancements to established existing practices
and tools. We must also focus on advancing and redefining the practice to support new techniques
that are better suited to delivering the capability, flexibility, and assurance necessary for modern
systems. We call this software producibility—the capacity to design, produce, assure, and evolve
innovative software-intensive systems in a predictable manner, while effectively managing risk,
cost, schedule, and complexity.

 Looking Ahead

In this section, we look forward in software engineering, in related topics in cybersecurity, and in
potential roles for the SEI as an institution. There are significant changes underway in the ways
we develop, assure, and sustain software-reliant systems. There are also significant changes in the
technologies and practices associated with software, including languages, tools, models, and anal-
yses, as well as supporting hardware and communications infrastructure. This visionary exercise
reflects an activity that is ongoing at the SEI, which is to continually look forward with respect to
both the mission context and the advancement of technology and practice. This forward-looking
process involves direct engagement with stakeholders across a spectrum from basic researchers in
universities to mission-focused operators and sustainment managers. The process involves identi-
fying and assessing potentially important points of technical advancement that can provide mean-
ingful leverage on a wide range of challenges associated with developing and sustaining software-
reliant systems.

In the past, an active forward-looking research and planning effort has led to the many advance-
ments documented throughout this volume, such as CMM/CMMI, TSP, the scalable conops of the
CERT/CC,71 real-time scheduling theory and practice, and the emergence of architecture practice.

71 W. L. Scherlis, S. L. Squires, R. D. Pethia, “Computer Emergency Response,” in P. Denning (ed.)

Computers Under Attack: Intruders, Worms, and Viruses, Addison-Wesley, 1990.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 287
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

In each case, impact is achieved though the attainment of a balance between the ambition and ex-
tent of leverage of the new advancement, on the one hand, and the feasibility and transition of the
advancement, on the other.

Looking forward, we envision advances in several areas that are critical to the development and
sustainment processes, to achieving assured and secure systems, and to creating certain function-
ality essential to a wide range of software-reliant DoD systems. All these advances occur in the
context of significant changes in the structure of major defense systems and the role of software in
those systems. For example, software is the key to achieving assured system-of-systems interoper-
ability, integration, and configurations; it enables the shift from platform-centric stovepipe solu-
tions to payload-centric “framework-and-apps” approaches.72 An emerging theme is the develop-
ment of robust and scalable architectures that enable component assembly and incremental
advancement. This is an important advance for the engineering of large and complex systems, but
it also creates significant challenges for software assurance.73

In addition, software has become the materiel of both defensive cybersecurity structures and of-
fensive cyber capability. Improving our ability to create, manipulate, and analyze software is es-
sential to advancing all aspects of cyber warfare. Finally, supply chains for software are becoming
more complex, more diverse, and more international. This evolution is a consequence of recent
advances in technology and in computing infrastructure. An unavoidable consequence of rich sup-
ply chains is that we must consider attack surfaces not just at the periphery of complex systems,
but also within the systems, including the role that humans play as operators and users in these
systems.

Below we highlight the four principal dimensions of the SEI technical vision. Each of these en-
compasses a wide range of technical problems. But each also demonstrates that incremental pro-
gress on technical sub-problems can lead to incremental improvements in mission capability.

1. Architecture-Led Incremental Iterative Development (ALIID). The goal of ALIID is to en-
able iterative and incremental development of highly capable and innovative systems with ac-
ceptable levels of programmatic risk. While small-team agile methods are well established in
most sectors, the challenges of scaling up to larger efforts remain profound. ALIID is intended to
manifest the aspiration of “agile at scale” by enabling larger scale iterative and incremental devel-
opment in DoD development and sustainment/modernization projects.

72 This concept of shifting emphasis in the development of DoD systems from “platform” to “payload”

is analogous to the emergence of socio-technical ecosystems for mobile devices (IOS and Android
frameworks and apps), for big data analytics (MapReduce frameworks), and in other applications.
ADM Greenert articulated the case in an article, Payloads over Platforms: Charting a New Course,
in US Naval Institute Proceedings Magazine, 2012.

73 This issue is addressed in the report Mission Impact of Foreign Influence on DoD Software, De-
fense Science Board 2007.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 288
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Diverse experience in industry suggests that this type of development is almost always accom-
plished on the basis of early commitment to effective architectural structures. There are two prin-
cipal reasons for this. First, architectural structures have enormous influence on quality and secu-
rity outcomes for systems. Without early consideration of quality and security attributes, it may be
infeasible to “bolt them on” later in a process. Indeed, for many categories of systems, early archi-
tectural decisions can be a greater influence on success than nearly any other factor. Second, ar-
chitectural structures strongly influence the work breakdown structure for major software-inten-
sive systems. The ability to achieve an effective granularity of effort—breaking larger tasks into
feasible subtasks that can be managed separately and at differing tempos—is an architecture-
based outcome at nearly every level of scale.

It is easy to see the benefits of the “framework-and-apps” model ubiquitously adopted in the com-
mercial sector for mobile devices, web applications, GUI development, and other categories of
systems. This model is a compelling example of architecture-enabled scale-up. At the SEI, we as-
pire to that same approach in defense software: for example, in the development of principles of
design for systems of systems. Military leaders have described a shift from platform-focused ap-
proaches to payload-focused approaches. This shift—which is premised on improving agility
while lowering costs and risks—is enabled by appropriate architectural concepts.

While many areas of technical development are needed to aggressively advance this vision, it is
nonetheless possible in many domains to advance development approaches based on these con-
cepts. The evidence of this feasibility is the widespread adoption of architecture-led approaches in
the commercial sector for products, software as a service (SAAS) services, and the like. Indeed,
many commercial and in-house government development organizations already employ practices
that are increasingly consistent with the ALIID vision. It is a major challenge, however, to adapt
these ideas to the kind of arm’s length engagement with development organizations characteristic
of DoD major defense acquisition programs.

Advancing the ALLIID vision involves at least four areas of particular emphasis:

a. Architectural structures and practices. This area includes identification of concepts
of operations for systems of systems, ultra-large-scale systems,74 and the like. This area
also includes the development of practices for early validation, to assist in getting relia-
ble early assessment of quality and security outcomes associated with particular archi-
tectural choices.

b. Measurement and process models for cost, progress, and engineering risks. Any
approach based on incremental and/or iterative development must incorporate effective
practices for estimating costs, progress, and risks and then use these practices to reward
developers for value earned. Cost-estimation techniques, for example, could be en-
hanced to evaluate both estimated mean values and variances and to support ongoing

74 See https://www.sei.cmu.edu/uls/ for more information.

https://www.sei.cmu.edu/uls/

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 289
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

re-estimation as a means to assess progress. Risk-reduction practices such as prototyp-
ing or modeling and simulation may lead, for example, to both reduced “cost to com-
plete” and also narrowed variances (i.e., greater confidence that the estimates are accu-
rate).

c. Incentives and acquisition practices. How can acquisition practices be developed to
build on advances in measurement and process models that feature a structuring of in-
centives that enables government and contractors to collaborate effectively in develop-
ment of architectures and in iteration at scale?

d. Software sustainment and modernization. The reality of many sustainment efforts is
that they are really supporting a continual evolution and modernization of systems.
Planning for continuous evolution, for example in the form of identifying and separat-
ing dimensions of variability, is a necessary feature of architectural design. Continuous
evolution, importantly, can also involve discontinuous change as infrastructures and
subsystems evolve and new choices emerge.

2. Evidence-Based Software Assurance and Certification. The goal of this second element of
vision is a dramatic reduction in the cost and difficulty of making assurance judgments related to
quality and security attributes. Achieving this goal is particularly important as systems become
more complex and evolve more rapidly. Current approaches for certification and accreditation are
largely based on an after-the-fact evaluation of a snapshot of a system.

While after-the-fact approaches are effective for certain well-defined categories of components
and systems, they tend to break down as systems increase in complexity, scale, and dynamism.
They also tend to hinder ongoing evolution, rapid reconfiguration, dynamic loading of compo-
nents, autonomy, and composition and interlinking of systems of systems. Put simply, these estab-
lished techniques do not scale up, and they do not work well for the emerging software frame-
work-based systems now prevalent in commercial and infrastructural applications.

The industry folklore has long asserted that quality-related activities, including security-related
assurance, can consume half of total development costs for larger systems. For example, the IBM
Systems Journal states that in a typical commercial development organization, “the cost of provid-
ing [the assurance that the program will perform satisfactorily in terms of its functional and non-
functional specifications within the expected deployment environments] via appropriate debug-
ging, testing, and verification activities can easily range from 50 to 75 percent of the total
development cost.” [Hailpern 2002]. Additionally, after-the-fact evaluation practices can add a
year or more to the elapsed time required to develop and deploy software-reliant systems. Com-
mercial systems, including products and software as a service and cloud-based systems, tend to
undergo a relatively rapid and continual evolution. For many of our DoD and infrastructural sys-
tems, we similarly need to support a continuous evolution.

Some areas of particular technical emphasis include

a. Architecture and composition principles. These enable separate evaluation of individual
components, with the possibility of combining results to achieve aggregate assurance

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 290
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

judgments. These principles are motivated by the reality of modern software supply
chains, which are rich and diverse in sourcing and geography.

b. Modeling and analytics. There is an extraordinary diversity of quality attributes signifi-
cant to DoD and infrastructural systems, and each has its own technical approaches to
support assurance judgments. Examples include testing, inspection, static analysis, veri-
fication, model checking, monitoring, and encapsulation.

c. Tools and practices. Modern software development practices are data-intensive, and
there are new good opportunities to incorporate the creation of evidence in support of
assurance claims into the process of development. This evidence-based assurance can
harmonize incentives to create designs and implementations that can more readily sup-
port evaluation.

d. Evaluation and other techniques to support the use of more opaque components in sys-
tems. This includes the challenge of undertaking acceptance evaluation for binary com-
ponents and potentially dangerous components from unknown sources.

3. Critical Component Capabilities. The goal of this third element is to enhance DoD software
capability in several areas that have critical and pervasive roles in DoD software-reliant systems.
These areas include the following:

a. Composable cyber-physical systems (CPS). “Cyber-physical” refers to the fact that
embedded software operates in the context of physical sensors and affectors. CPS thus
includes control systems, real-time systems, mobile systems, distributed systems, and
many other categories of systems pervasive in the DoD and critical infrastructure.
These systems tend to benefit from a conventionalization of architectural models and
design approaches (such as rate monotonic analysis). But they also may have greater
complexity due, for example, to higher coupling and the need to model and manage as-
sociated physical system components. They also frequently need to assure that real-time
deadlines are met. A consequence is that they typically manifest greater internal cou-
pling in their design, thwarting higher levels of capability, composition, and flexibility.

b. Networks, networking, and mobile applications. Network structure and characteris-
tics have a significant influence on software and systems architectures for military sys-
tems. Networks at the “edge,” such as in-theater, can be subject to greater challenges
with respect to both internal and reach-back connectivity. This influences network ar-
chitecture, security planning, and also the management of data and computation re-
sources critical to warfighting. In-theater networks also provide infrastructure for mo-
bile devices and applications. These applications have particular needs regarding
security, context-awareness, usability, and scalability.

c. Autonomous systems. Autonomous systems are cyber-physical systems that can accept
sensor data and mission guidance, and, with very limited (or no) human interaction, ar-
rive at mission decisions and enact outcomes. These systems are increasingly critical to
the defense mission, and yet they pose particular challenges for verification and valida-
tion since they rely so much less on ongoing human interaction. Indeed, the capability

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 291
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

and complexity of these systems are often limited for this reason. Systems must both
behave as expected and, additionally, not manifest unwanted behaviors that can be dan-
gerous or threaten mission success. From a technical perspective, autonomy can be par-
ticularly challenging because of the vast state space, the number of possibilities of com-
binations of inputs, challenges of error tolerance, and the difficulty of fully modeling
the environmental circumstances of their operation.

d. Data-intensive systems for analytics and for modeling and simulation. Advances in
sensor fidelity, rapid growth in network capacity, increasing convergence in data center
and high-performance computing architectures, advances in large-scale data storage,
and emerging frameworks for scalable distributed computing (such as MapReduce and
GraphLab) have all resulted in the growing phenomenon of “big data.” There are many
significant applications of big-data techniques in DoD and infrastructural systems—and
in the development of those systems as well. Indeed, many of the other features of the
SEI Strategic Research Plan build on progress in big data.

4. Cybersecurity Tradecraft and Analytics. The goal of the fourth strategic element is to ad-
vance analytic capability in support of diverse aspects of the cybersecurity mission. These aspects
include analytics and situational awareness for malware; vulnerability categorization and assess-
ment; vulnerability information management; network activity analysis; threat characterization
and assessment, including insider and supply-chain threats; organizational security; and many
other dimensions of operational response, remediation, and recovery. In addition, there is increas-
ing emphasis on the theoretical underpinnings in cybersecurity. Advances in foundational work
can assist in the formulation of technical and operational strategies that go beyond purely reactive
approaches.

This capability builds on a range of data assets and tooling related to adversarial tradecraft, mal-
ware, vulnerabilities, insider threats, and other results of experience with large numbers of cyber-
security-related incidents. There are diverse purposes of this strategic element, including

a. Improvement in our understanding and communication of threats and risks and adver-
sarial intent

b. Development of better preventive approaches in the engineering of systems and in man-
aging secure operations, including considerations for security and assurance “at scale,”
improved indications and warning, and near-real-time data analysis

c. Support for forensic and corpus analysis

d. Support for hypothesis generation using machine learning, near-real-time analysis, and
other advanced capabilities

The future of software and cybersecurity will go well beyond incremental improvements on the
current baseline of capability, quality, security, and productivity. The four areas outlined above
represent features of an emerging vision of this future capability. This vision encompasses devel-
opment and sustainment processes, means to achieve more highly assured and secure systems, and
mechanisms associated with creating functionalities most essential to a wide range of DoD sys-

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 292
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

tems. The SEI is implementing collaborative strategies to make progress in these technically chal-
lenging areas, and we expect that this activity will make significant differences in the practice of
software and cybersecurity.

 Reference

[Hailpern 2002] Hailpern, B. & Santhanam, P. “Software Debugging, Testing, and Verification.”
IBM Systems Journal 41:1 (2002).

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 293
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

10 Conclusion

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 294
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Leading the Community

Charged with a challenging mission, the SEI has responded by building a mature organization that
has not only kept abreast of evolving technology, but also has consistently anticipated DoD needs
and prepared technology solutions to meet those needs. At the same time, the SEI has provided
leadership to the broader software engineering community.

A major contributing factor in the SEI’s leadership position has been the early strategic decision
to engage the community in its efforts to achieve the greatest impact. In essence, the SEI identi-
fies a problem area important to the DoD and the broader software engineering community, re-
cruits a recognized leader in that area, and then engages the community in a consensus-building
effort to produce a solution. The community responds because it respects the SEI’s independent
position, free of commercial or government bias. As the SEI’s reputation has grown, leaders in the
community have become willing to cooperate because they want to influence the direction and
they respect the SEI’s proven ability to lead them to a consensus. It is not uncommon for senior
corporate officers at the level of director of engineering or even vice president, senior research fel-
lows, senior government officials, and leading academics to participate in SEI-led efforts. Interna-
tional participation is also the norm. These external contributions are often significant, involving
many hours of collaboration; and the results are beyond what any organization could produce on
its own. More importantly, the results are accepted by the community.

Much of the work described in this volume is a result of such a process, refined over time. The
following are a few notable examples:
• the master of software engineering curriculum and the undergraduate curriculum in software

engineering

• the Ada Adoption Handbook, which provided guidance to DoD program managers in the
adoption of Ada

• the Capability Maturity Model for Software and its derivatives

• the CERT Coordination Center (originally the Computer Emergency Response Team/Coordi-
nation Center) processes

• the International Process Research Consortium’s outline of process research

• the ultra large scale systems definition of software engineering research directions

• the Architecture Analysis and Design Language (AADL), which has been adopted as an inter-
national standard for avionics systems

• the OCTAVE method’s use for compliance with the Health Insurance Portability and Ac-
countability Act (HIPAA)

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 295
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Highlighting 30 Years of Contributing to DoD Software Capability

As the preceding pages have detailed, the SEI has lead the adoption of significant improvements
that have changed the nature of software engineering.

 Real-Time Embedded and Cyber-Physical Systems

Thirty years ago, software for real-time embedded systems was developed largely in assembly
language, with few supporting tools and with software architectures that were often inappropriate
for the task and schedulers that were developed using ad-hoc analysis. Today, software engineers
have architecture models for real-time systems and analytic techniques for designing schedulers
that will prevent failure; they confidently construct such systems in high-level languages.

Specifically, the SEI
• assisted the DoD with several technical aspects of Ada adoption and provided “honest bro-

ker” guidance to the software development community

• developed a real-time testbed for assessing the quality of compilers and runtime systems

• with CMU faculty, developed rate monotonic analysis, which provided the first engineering
basis for developing real-time schedulers

• extended the analysis method to multi-core processors

• developed an architecture that allows for safe operation when the system is composed of a
safe component and a less reliable component

• led the development of an Architecture Analysis and Design Language (AADL), which is an
international standard and used on a variety of DoD systems, particularly guidance systems

 Software Engineering Education and Training

Thirty years ago, there was no accepted curriculum for software engineering and few universities
were teaching software engineering-related courses. Today, nearly all university software engi-
neering-related curricula trace their lineage to SEI-led efforts, including undergraduate and mas-
ter’s degree software engineering curricula, software assurance curricula, and survivability and
information assurance curricula for system administrators.

Specifically, the SEI
• led the development of a master of software engineering (MSE) curriculum that is used by

most universities

• offered video courses of its joint MSE program to a large audience, thereby accelerating the
adoption of the curriculum

• led the development of an undergraduate curriculum from which most universities tailor their
programs

• established a mechanism for managing future curriculum development through the IEEE

• trained more than 60,000 people involving 65 different courses

• established a partner network of companies authorized to provide SEI-developed training

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 296
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

• established an online training program for network security professionals and for forensics
analysts

 Management

Thirty years ago, managing the software development process for even a 100,000 lines-of-code
system was widely acknowledged as chaotic, leading to extensive delays, overruns, and cata-
strophic failure. Today, organizations have models for the management process, which they are
able to continuously monitor and improve to successfully manage the development of systems
with multi-million lines of code, with predictable cost and schedules.

Specifically, the SEI
• led the development of an internationally adopted capability maturity model for software that

enabled disciplined management of the software engineering process

• developed a mechanism for DoD acquisition to evaluate the software engineering maturity of
organizations proposing work for the DoD

• developed a team approach to software engineering that enabled teams to perform in a disci-
plined manner and achieve significant improvements in productivity and error rates

• led the development of a software risk management system for acquisition programs

• developed several capability maturity systems for specialized application, including person-
nel, systems, and resiliency, that have been adopted widely

 Security

Thirty years ago, engineers paid little attention to security when building most software and most
networks. Indeed ARPANET, which was the predecessor of the internet, was operated with no se-
curity under the assumption that there was no threat. Today, security is an integral part of soft-
ware design, and an active community supports computer and internet security to counter the
growing threat of fraud, theft, and espionage.

Specifically, the SEI
• initiated the Computer Emergency Response Team/Coordination Center, now the CERT Co-

ordination Center (CERT/CC), building relationships with numerous companies and aca-
demic and government experts to collectively react to network security incidents. During its
first 20 years of operation, the CERT/CC processed more than 3 million messages, 25,000
hotline calls, and 300,000 incident reports; cataloged nearly 45,000 vulnerabilities; and pub-
lished over 2,500 vulnerability notices

• developed a malicious code database and analysis capability and not only maintained an Arti-
fact Catalog but also provided tools and training to the community

• developed the FIRST (Forum of Incident Response and Security Teams) network—an inter-
national collection of thousands of organizations that collaborate on network security inci-
dents

• developed secure coding guidelines and standards to help developers prevent vulnerabilities

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 297
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

• developed network situational awareness tools and analysis techniques for quantitatively
characterizing threats and targeted intruder activity

• developed cybersecurity engineering solutions to incorporate security early in the software
development cycle

 Engineering Methods

Thirty years ago, there was scant engineering basis to support large-scale software development.
As a consequence, problems abounded—including a lack of a theoretical basis for software con-
figuration management, poor understanding of an open systems approach, scarce information on
software technologies, and the absence of an integrated, tool-based software engineering environ-
ment. Today, engineering tools, methods, and practices underpin the development of software-
intensive systems throughout the lifecycle.

Specifically, the SEI
• devised software configuration management concepts and practices on which the software

community could base the development of tools, methods, and practices

• developed and codified a body of expertise on computer-aided software engineering (CASE)
practices, resulting in several commercially available CASE products

• led efforts to inform and educate the community about open systems practice75

• created the Senior Technical Review Group, providing the Air Force and other organizations
with a reliable source for information on technologies

• developed methods for re-engineering, such as Options Analysis for Reengineering (OAR),
which helps programs to more effectively identify and mine legacy software components

• led an international community in developing key concepts, methods, and practices for man-
aging and engineering systems built using commercial off-the-shelf (COTS) products, includ-
ing several education courses and the Evolutionary Process for Integrating CBS (EPIC)76

• enabled customers to realize the benefits of net centricity through the development of exper-
tise in service-oriented architecture (SOA)

 Software Architecture

Thirty years ago, architecture was a hardware concept, and few even used the term in connection
with software. Today, software architecture is an important consideration in the acquisition and

75 This effort included work with the DoD Open Systems Joint Task Force (OS-JTF), the creator of

MOSA (Modular Open Systems Approach), and education, not only of the U.S. defense community
(including GAO), but also of allied defense communities in the United Kingdom, Canada, Australia,
and New Zealand. It also included the leadership of an IEEE Portable Operating System Interface
(POSIX) working group for real-time POSIX specifications.

76 IBM Rational licensed EPIC and used it as the basis for a CBS (computer-based system) plug-in
for the Rational Method Composer 7.5 process tool.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 298
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

design of software-intensive systems; most universities even offer a course in software architec-
ture.

Specifically, the SEI
• was active in addressing software architecture as a discipline before it became widely recog-

nized as a software engineering topic

• developed reference architectures for specific applications, such as flight simulators and user
interfaces

• developed a feature-oriented domain analysis technique that served as the basis for a plethora
of domain analysis tools available today

• developed methods to give engineers a methodology for identifying and analyzing important
software architecture decisions

• focused on the importance of quality attributes as an architectural driver and developed a
method for addressing non-functional quality attributes as part of the software architecture

• produced guidelines for developing a software product line and supporting practices that have
been used successfully by the DoD and industry organizations to gain significant improve-
ments in their ability to evolve software across multiple platforms

 Computer Forensics

Thirty years ago, the word forensics was not used in conjunction with computers, and the notion
that one could extract forensic information from a computer was not considered outside the re-
search community. Today, law enforcement is able to conduct sophisticated forensic analysis on
computers used in criminal activity, learn new techniques in a virtual environment, and collabo-
rate with one another in that virtual environment.

Specifically, the SEI
• used its expertise in vulnerability analysis and network intrusion detection to provide support

to computer forensics analysts in several government agencies

• developed techniques and supporting tools and training to help computer forensics analysts
address high-profile intrusions and identity theft, and investigate computer crime

• provided training for government computer forensics analysts to enable them to stay current
with the latest tools and methods used by cybercriminals

• developed forensic technology from which evidence is admissible in federal court computer
crime cases

• developed a state-of-the art environment that enables geographically dispersed analysts to ac-
cess to tools and computing resources and, thus, to cooperate on cases

• defined a master’s-level curriculum in digital forensics that has been implemented at Carnegie
Mellon University’s Information Networking Institute

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 299
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 Direct Support to Government Systems Developers
The SEI has been at the forefront of most software engineering technology developments over the
past 30 years and has established itself as a leader to whom the defense software engineering
community turns for insight and solutions. The SEI is not a consulting organization in the tradi-
tional sense. Nevertheless, it has leveraged its expertise by providing direct support to many DoD
and other government organizations facing unique challenges.

The SEI regularly receives comments from government officials thanking it for its contribution to
their efforts. These differ from the kinds of acknowledgement received for specific technologies
outlined in the technology subsections in that they normally refer to specific individuals and nor-
mally cover a range of support that the SEI provided. Since the following are simply examples,
the names of the SEI individuals, when mentioned, are replaced by (…).

I am writing to commend the CMU/SEI handbook called QUASAR and its authors. The F-35 Joint
Strike Fighter (JSF) Program used it to assess the computer system architectures of our aircraft
and ground systems. It helped us immensely in focusing attention on often-neglected quality at-
tributes, rather than solely upon functional or component-based views of those systems. It guided
us in both technical and managerial approaches to architecture assessment. QUASAR enabled the
F-35 Program to verify fulfillment of its contractual architectural requirements, and in so doing,
improve the quality of the product. QUASAR’s basis in CMU/SEI’s real-world assessment experi-
ence, including on the F-35, undergirds its credibility and veracity. During the past four and one
half years, F-35 used QUASAR to successfully assess major subsystems on nine occasions. I par-
ticipated in the planning or execution of all these events, in my capacity as Mission Systems Ar-
chitect, and later as Air System Architect. The handbook helped coordinate the efforts of the as-
sessment teams (comprising the Program Office plus CMU/SEI and other subject matter experts)
with system designers (comprising the air system contractor—Lockheed Martin, plus its suppli-
ers). I heartily recommend the continued use and development of this valuable tool.

— Mike Bossert, Mission Systems Architect, JSF JPO (Joint Strike Fighter Joint Program Office)
Mission Systems [Firesmith 2010]

Continued SEI support to Global Hawk Program Office is vital to the continuity of classified pro-
gram interdependencies and interactions.… SEI provides technical continuity in support of OSD
and AF leadership directives with respect to AF UAS Command and Control Initiative standards
(UCI) and also holds technical leadership positions in OSD’s UAS Control Segment Working
Group (UCS). …Additionally, SEI provides significant software engineering support to two
Ground Segment efforts valued at over ~$100M—domain expertise and assistance to contractor
audits and technical reviews are essential to Global Hawk’s success.

— Carlin Heimann, Col, U.S. Air Force, Global Hawk System Program Director AFLCMC/WIG

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 300
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 References

[Firesmith 2010] Firesmith, Donald. Quality Assessment of System Architectures and their Re-
quirements (QASAR). Software Engineering Institute, Carnegie Mellon University, 2010.
http://www.sei.cmu.edu/library/assets/presentations/SoSECIE-webinar-2010-firesmith.pdf

 An Experienced Staff Well Positioned to Continue Leadership

The SEI is fortunate to have a staff of recognized leaders in software engineering. Many estab-
lished those reputations in industry, government, or academia before joining the SEI. Others have
established themselves through their SEI activities.

In addition to academic degrees in disciplines related to software engineering, the SEI has people
who have been recognized by their peers in a variety of ways:
• recipient of the National Medal of Technology

• member of the National Academy of Engineering

• fellows of the IEEE, ACM, and the American Institute of Aeronautics and Astronautics

• distinguished members of the ACM

• recipient of the USENIX Lifetime Achievement award

• conference chairs, program chairs, members of program committees

• invited keynote speakers, invited talks

Another form of recognition is the significant number of SEI publications that have been refer-
enced by others, demonstrating SEI technical leadership.

 External Evaluations by DoD Sponsor

As part of the normal due-diligence in advance of contract renewal, the sponsoring agent has con-
ducted a comprehensive review of the SEI involving a blue-ribbon panel of government, industry
and academic experts, including representation from government customers and industry partners.
The primary purpose of those reviews is to confirm the continuing need for the SEI and its effi-
cacy in executing its mission by conducting the following:
1. an examination of the sponsor’s special technical needs and mission requirements that are

performed by the FFRDC to determine if and at what level they continue to exist
2. consideration of alternative sources to meet the sponsor’s needs 

3. an assessment of the efficiency and effectiveness of the FFRDC in meeting the sponsor’s
needs, including the FFRDC’s ability to maintain its objectivity, independence, quick re-
sponse capability, currency in its field(s) of expertise, and familiarity with the needs of its
sponsor

4. an assessment of the adequacy of the FFRDC management in ensuring a cost-effective opera-
tion [DoD 2014]

http://www.sei.cmu.edu/library/assets/presentations/SoSECIE-webinar-2010-firesmith.pdf

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 301
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

In the course of these reviews, the panel interviews customers, reviews documents and solicits in-
puts from a variety of sources in and outside the government. In answering the three questions the
panel makes overall assessments and some specific recommendations for change both with the
SEI program, changes to the sponsoring agreement and changes with government oversight.

The following are excerpts from the Executive Summary of these reports over the last 30 years:

The SEI has proven to be a leader in software engineering—a discipline essentially non-ex-
istent ten years ago. The SEI’s software process products, such as the Capability Maturity
Model and its organizational process appraisal methods, have been especially useful to the
Government and Industry. The widespread adoption of these products demonstrates the
SEI’s ability to mobilize the software engineering software improvement.
—Blue-Ribbon Panel Comprehensive Review of the Software Engineering Institute [DoD
1994]

The SEI continues to maintain a world-class reputation as a software engineering research
and development center. The SEI provides technical leadership to advance the practice of
software engineering so that DoD can acquire and sustains its software-intensive systems
with predictable and improved cost, schedule and quality
—Comprehensive Technical Review of Software Engineering Institute Programs [DoD
2004]

The SEI is an independent, unbiased, agent well-suited to assess the current state of any
given approach, technology, or process and provide general guidelines and recommenda-
tions to its sponsors. …The SEI is uniquely capable. Staff expertise crosses the lifecycle:
from invention to sustainment. The SEI can also rely on its deep connections to industry and
academia when additional expertise is needed. …The SEI delivers value for the warfighter
through a combination of line-funded research and problem-solving engagements with the
DoD and other users. Using this leveraged approach enables the SEI, a relatively small in-
stitution, to accomplish highly significant results in diverse areas related to software—rang-
ing from real-time systems design and software assurance, to Agile practices and measure-
ment capabilities, and to secure coding and malware analytics.
—Carnegie Mellon University Software Engineering Institute Research and Development
Laboratory Federally Funded Research and Development Center Comprehensive Review
[DoD 2014]

Another consistent finding by these Comprehensive Reviews is that, despite the SEI’s ability to
address pervasive problems for the DoD, other government agencies, and their supply chains, the
increasing demand for greater reliance on software, the increasing complexity of defense systems,
and the expanding threats require continued innovation and even greater reliance on solutions to
new problems.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 302
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

 A Vision for the Future of Software Engineering

In Section 9, the current and two former SEI chief technology officers (CTOs) collaborate in shar-
ing their vision of the future of software engineering, particularly as it applies to the Department
of Defense. All three have a long history of research in the defense, as well as the academic and
industrial, contexts. This vision, strongly influenced by their personal experiences and participa-
tion in Defense Science Board, Air Force Science Advisory Board, and National Research Coun-
cil studies, recognizes both the pervasiveness and criticality of software for defense. Software is
both an enabler of capability and, if not carefully developed, introduces vulnerabilities that can be
exploited.

The CTOs’ vision emphasizes architecture-led iterative development; evidence-based software
assurance and certification; critical component capabilities for cyber-physical, networked, and au-
tonomous systems; and cybersecurity, not as separate topics so much as an interrelated collection
of future capabilities. The CTO vision has consistently guided the SEI’s research agenda and con-
tinues to do so today. Most of the exciting current SEI research reflects elements of this vision
and promises to provide the basis for the DoD to continue relying on software for increased capa-
bility.

 References

[DoD 1994] Department of Defense. Blue-Ribbon Panel Comprehensive Review of the Software
Engineering Institute. DoD, 1994. Not publicly available.

[DoD 2004] Department of Defense. Comprehensive Technical Review of Software Engineering
Institute Programs. DoD, 2004. Not publicly available.

[DoD 2014] Department of Defense. Carnegie Mellon University Software Engineering Institute
Research and Development Laboratory Federally Funded Research and Development Center
Comprehensive Review. DoD, 2014. Not publicly available.

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 303
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Appendix Authors Contributing to this Report

This report was written by those Members of the Technical SEI staff who were involved in the
work. It was compiled by Larry Druffel who did an initial edit and is overall responsible for selec-
tion of content and presentation. Linda Pesante then edited the entire report for consistency.

The following Members of Technical Staff, current and former, contributed directly to this
presentation.

Section Author

Preface Larry Druffel

Foreword Blaise Durante, Angel Jordan, Bob Kent

Introduction Larry Druffel

Embedded Real Time
Dionisio de Niz, Claire Dixon, Pat Donohoe, Larry Druffel, Peter Feiler,
John Foreman, John Goodenough, Mark Klein, Lui Sha, Chuck Weinstock

Education and Training
John Antonucci, Mark Ardis, Rich Caralli, Sally Cunningham, Larry
Druffel, Harvey Hallman, Tom Hilburn, Chris May, Nancy Mead, Crisanne
Nolan, Linda Pesante, Larry Rogers, Linda Shooer, Carol Sledge

Management

Julia Allen, Anita Carleton, Clyde Chittister, Mary Beth Chrissis, Audrey
Dorofee, Larry Druffel, Jack Ferguson, Wolf Goethart, Erin Harper, Will
Hayes, Mike Konrad, Steve Masters, Sally Miller, Austin Montgomery,
John Morley, Jim Over, Mark Paulk, Linda Pesante, Sandy Shrum, Bob
Stoddard, Bill Thomas, David White, Dave Zubrow

Security Jeff Carpenter, Roman Danyliw, Rich Pethia, Linda Pesante

Engineering Methods
Lisa Brownsword, Peter Feiler, John Foreman, John Goodenough, Ed
Morris, Tricia Oberndorf, Linda Pesante, Bill Pollak, Dennis Smith

Architecture
Len Bass, Gary Chastek, Sholom Cohen, Larry Druffel, Mark Klein, Linda
Northrop, Kurt Wallnau

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 304
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

Forensics Rich Nolan, Linda Pesante, Kris Rush,

Future of Software
Engineering

Kevin Fall, Bill Scherlis, Doug Schmidt

Conclusion Larry Druffel, John Foreman

CMU/SEI-2016-SR-027 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 305
Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

January 2017
3. REPORT TYPE AND DATES

COVERED
Final

4. TITLE AND SUBTITLE
A Technical History of the SEI

5. FUNDING NUMBERS
FA8721-05-C-0003

6. AUTHOR(S)
Larry Druffel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2016-SR-027

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFLCMC/PZE/Hanscom
Enterprise Acquisition Division
20 Schilling Circle
Building 1305
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report chronicles the technical accomplishments of the Software Engineering Institute and its impact on the Department of Defense
software community, as well as on the broader software engineering community. The technical accomplishments of the SEI are
interwoven with the technical developments in the broader software engineering community. The described technical work is organized
into areas of importance to the mission of the SEI: Real-Time Embedded Systems, Education and Training, Management, Security,
Software Engineering Methods, Software Architecture, and Computer Forensics.

14. SUBJECT TERMS
Department of Defense, DoD, Software Engineering, Real-Time Embedded Systems,
Education and Training, Management, Security, Software Engineering Methods, Software
Architecture, Computer Forensics, Future of Software Engineering, Leading Software
Community

15. NUMBER OF PAGES
329

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	http://www.sei.cmu.edu
	Foreword
	Angel Jordan University Professor Emeritus, Provost Emeritus Carnegie Mellon University
	Robert J. Kent President of SOSSEC Inc.
	Blaise Durante Deputy Assistant Secretary for Acquisition Integration for the Air Force
	Evaluating and Assessing Program Execution
	Adopting New Technical Approaches for Acquisition
	Support to Policy and Leadership Projects
	Education and Training for the Acquisition Community
	Consequence of SEI Support on Air Force Programs

	Preface
	Organization
	Suggestions for Readers

	Abstract
	1 Introduction
	1
	1.0 Introduction
	1.0.1 The DoD Software Environment in 1984 Motivated Formation of the SEI
	1.0.2 SEI Charter—Improve the State of the Practice of Software Engineering
	1.0.3 Software Engineering Context into Which SEI was Formed and Evolved
	1.0.4 The SEI Began by Interpreting the Charter and Developing a Technical Strategy
	1.0.5 Interpreting the Charter
	1.0.6 Evolution of the Effort Composition Was Driven by Experience and Guidance from the Principal Sponsor
	1.0.7 The SEI Proposes Work Based on an Evolving Technical Strategy
	1.0.8 Mechanisms for Engaging the Community
	1.0.9 References

	2 Real-Time Embedded Systems Engineering
	2.0 Introduction to Real-Time Embedded and Cyber-Physical Systems
	2.0.1 The SEI Contributed to Early DoD Ada Adoption Effort for Real-Time Embedded Systems
	2.0.2 The SEI Provided an Engineering Basis for Real-Time Systems Development
	2.0.3 SEI Research Included Software for Parallel Hardware Architectures
	2.0.4 The SEI Developed Analytic Techniques and Supporting Tools for Engineering Real-Time Systems
	2.0.5 SEI Contributions to Standards
	2.0.6 Summary
	2.0.7 References

	2.1 Ada/Real-Time Embedded Systems Testbed
	2.1.1 The Challenge: Evaluating Runtime Performance on Embedded Processors
	2.1.2 A Solution: A Testbed for Real-Time Performance Evaluation
	2.1.3 The Consequence: Empirical Results for Runtime Performance Hypotheses
	2.1.4 The SEI Contribution
	2.1.5 References

	2.2 Distributed Ada Real-Time Kernel
	2.2.1 The Challenge: Provide Consistent Support for Ada in Real-Time Systems
	2.2.2 A Solution: A Distributed Ada Real-Time Kernel
	2.2.3 The Consequence: A Prototype Demonstration
	2.2.4 The SEI Contribution
	2.2.5 References

	2.3 Ada Adoption Handbook
	2.3.1 The Challenge: Where and When to Adopt Use of the Ada Language
	2.3.2 A Solution: The Ada Adoption Handbook
	2.3.3 The Consequence: Unbiased Guidance
	2.3.4 The SEI Contribution
	2.3.5 References

	2.4 Rate Monotonic Analysis
	2.4.1 The Challenge: Predicting Real-Time Systems’ Ability to Meet Performance Deadlines
	2.4.2 A Solution: Rate Monotonic Analysis
	2.4.3 The Consequence: Engineering Replaces Art
	2.4.4 The SEI Contribution
	2.4.5 References

	2.5 Simplex Architecture
	2.5.1 The Challenge: Ensuring the Integrity of Safety-Critical Systems
	2.5.2 A Solution: The Simplex Architecture
	2.5.3 The Consequence: Increased Reliability of Safety-Critical Systems
	2.5.4 The SEI Contribution
	2.5.5 References

	2.6 Software for Heterogeneous Machines
	2.6.1 The Challenge: Meeting Performance Goals for Real-Time Applications Involving Heterogeneous Machines
	2.6.2 A Solution: Software for Heterogeneous Machines (Durra)
	2.6.3 The Consequence: Successful Demonstration in Prototype Systems
	2.6.4 The SEI Contribution
	2.6.5 References

	2.7 Real-Time Multicore Scheduling
	2.7.1 The Challenge: Taking Advantage of Multicore Chips
	2.7.2 A Solution: Real-Time Scheduling for Multicore Processors
	2.7.3 The Consequence: Effective Use of Multicore Processors
	2.7.4 The SEI Contribution
	2.7.5 References

	2.8 Integrated Methods for Predictive Analytic Composition and Tradeoff
	2.8.1 The Challenge: Effective Real-Time Performance in Dynamic Environments
	2.8.2 A Solution: Development of Analytic Methods
	2.8.3 The Consequence: Bringing an Analytic Basis to Engineering Dynamic Systems
	2.8.4 The SEI Contribution
	2.8.5 References

	2.9 Architecting Software-Reliant, Safety-Critical Systems with SAE AADL
	2.9.1 The Challenge: Reducing Faults in Safety-Critical Defense Systems
	2.9.2 A Solution: SAE Architecture Analysis & Design Language (AADL)
	2.9.3 The Consequence: Architecture-Centric Engineering Beyond Documentation
	2.9.4 The SEI Contribution
	2.9.5 References

	3 Education and Training
	3.0 Introduction to Education and Training
	3.1 Academic Curricula
	3.1.1 Curricula Transition
	3.1.2 Professional Education and Training
	3.1.3 Evolution of Instructional Delivery Based on Technology Advancements
	3.1.4 References

	3.2 Model Curriculum for Master of Software Engineering Degree
	3.2.1 The Challenge: The Need for a Standard Software Engineering Curriculum
	3.2.2 A Solution: Creation of the SEI Master of Software Engineering Curriculum Guidelines
	3.2.3 The Consequence: New Academic Programs Established
	3.2.4 The SEI Contribution
	3.2.5 References

	3.3 Undergraduate Software Engineering Curriculum
	3.3.1 The Challenge: Lack of Curriculum Guidance for Undergraduate Software Engineering Education
	3.3.2 A Solution: Development and Dissemination of Curriculum Guidance
	3.3.3 The Consequence: Undergraduate Software Engineering Programs Established
	3.3.4 The SEI Contribution
	3.3.5 References

	3.4 Software Assurance Curriculum for Colleges and Universities
	3.4.1 The Challenge: Demand for Software Assurance Expertise
	3.4.2 A Solution: Educate Future Practitioners
	3.4.3 The Consequence: More Well-Qualified Software Assurance Professionals
	3.4.4 The SEI Contribution
	3.4.5 References

	3.5 Survivability and Information Assurance Education for System Administrators
	3.5.1 The Challenge: Adapting System Administration to the Unexpected and to Business
	3.5.2 A Solution: Survivability and Information Assurance Curriculum
	3.5.3 The Consequence: System Administrators Who Support the Business Mission
	3.5.4 The SEI Contribution
	3.5.5 References

	3.6 Conference on Software Engineering Education and Training
	3.6.1 The Challenge: A Forum for Software Engineering Education Advances and Collaboration
	3.6.2 A Solution: The Premier Conference on Software Engineering Education
	3.6.3 The Consequence: Growth of Conferences and Tracks on Software Engineering Education
	3.6.4 The SEI Contribution
	3.6.5 References

	3.7 CMU Master of Software Engineering Program
	3.7.1 The Challenge: The Need for a Strong Academic Software Engineering Program
	3.7.2 A Solution: Creation of the CMU Master of Software Engineering Program
	3.7.3 The Consequence: New Academic Programs Established
	3.7.4 The SEI Contribution
	3.7.5 References

	3.8 Executive Education Program
	3.8.1 The Challenge: Effectively Managing Software Systems
	3.8.2 A Solution: Executive Education Program
	3.8.3 The Consequence: Improved Management by Executives
	3.8.4 The SEI Contribution
	3.8.5 References

	3.9 Professional Training
	3.9.1 The Challenge: Providing High-Quality Training to Software Practitioners
	3.9.2 A Solution: Quality Assurance for SEI Training Products
	3.9.3 The Consequence: SEI Results Move from Research into Practice
	3.9.4 The SEI Contribution

	3.10 Education and Training Delivery Platforms
	3.10.1 The Challenge: Deliver Education and Training to Large, Geographically Dispersed Audiences
	3.10.2 A Solution: Take Advantage of Changing Technologies
	3.10.3 The Consequence: Software Engineering Is Adopted as a Discipline
	3.10.4 The SEI Contribution
	3.10.5 References

	3.11 Technology for Cyber Workforce Development
	3.11.1 The Challenge: Training the Cyber Workforce in a Rapidly Changing World
	3.11.2 A Solution: Virtual Training Technology for Individuals and Teams
	3.11.3 The Consequence: Unified Platform for Cyber Workforce Development
	3.11.4 The SEI Contribution
	3.11.5 References

	4 Management
	4.0 Introduction to Management
	4.0.1 Management of the Software Process
	4.0.2 Support for Acquisition Offices
	4.0.3 Maturity Profile
	4.0.4 Expansion of Maturity Modeling
	4.0.5 The People CMM
	4.0.6 The Systems Engineering CMM (SE-CMM)
	4.0.7 The CERT Resilience Management Model
	4.0.8 Integration of Maturity Modeling
	4.0.8.1 CMMI for Development
	4.0.8.2 CMMI for Acquisition
	4.0.8.3 CMMI for Services

	4.0.9 Smart Grid Maturity Model: A New Approach for Utilities
	4.0.10 Characterizing Software Risks
	4.0.11 Bringing Discipline to Software Development Activities
	4.0.12 Measurement and Analysis
	4.0.13 References

	4.1 The Capability Maturity Model for Software
	4.1.1 The Challenge: Consistent and Predictable Management of Software Development.
	4.1.2 A Solution: The Capability Maturity Model for Software
	4.1.3 The Consequence: A Revolutionary International Movement
	4.1.4 The SEI Contribution
	4.1.5 References

	4.2 Appraisal Methods
	4.2.1 The Challenge: Predicting Software Engineering Performance
	4.2.2 A Solution: Assessing the Capability of Contractors
	4.2.3 The Consequence: Reduced Risk in Selecting Contractors
	4.2.4 The SEI Contribution
	4.2.5 References

	4.3 Maturity Profile
	4.3.1 The Problem: Lack of Data on Use of SEI Models and Appraisal Results
	4.3.2 A Solution: Community Maturity Profile
	4.3.3 The Consequence: Reliable Source of Data for the Community
	4.3.4 The SEI Contribution
	4.3.5 References

	4.4 The People Capability Maturity Model
	4.4.1 The Challenge: Assessing and Improving Workforce Capability
	4.4.2 A Solution: The People CMM
	4.4.3 The Consequence: A Competent Workforce That Can Meet Business Goals
	4.4.4 The SEI Contribution
	4.4.5 References

	4.5 Managing Operational Resilience
	4.5.1 The Challenge: Delivering Essential Services in the Presence of Stress and Disruption
	4.5.2 A Solution: Convergence of Operational Risk Disciplines That Accelerated the SEI’s Ability to Tackle Resilience
	4.5.3 The Consequence: Organizations Can Determine Their Capability to Manage Resilience
	4.5.4 The SEI Contribution
	4.5.5 References

	4.6 Capability Maturity Model Integration
	4.6.1 The Challenge: Developing a Single Framework for Process Improvement
	4.6.2 A Solution: The Capability Maturity Model Integration
	4.6.2.1 CMMI Constellations

	4.6.3 The Consequence: CMMI Models Are Used Effectively Worldwide
	4.6.4 The SEI Contribution
	4.6.5 References

	4.7 Expanding the CMMI Product Suite to the Acquisition Area of Interest
	4.7.1 The Challenge: Meeting Acquisition Needs with the CMMI Product Suite
	4.7.2 A Solution: CMMI-ACQ – A Full Acquisition Solution
	4.7.3 The Consequence: Acquisition Joins Development for Process Improvement
	4.7.4 The SEI Contribution
	4.7.5 References

	4.8 The Smart Grid
	4.8.1 The Challenge: The Need for New Approaches for Utilities
	4.8.2 A Solution: Smart Grid Model and Transformation Process
	4.8.3 The Consequence: Effective Method for Utilities’ Transition to the Smart Grid
	4.8.4 The SEI Contribution
	4.8.5 References

	4.9 Software Risk Management
	4.9.1 The Challenge: Assessing and Managing Software Risks
	4.9.2 A Solution: Apply Risk Management Techniques to Software
	4.9.3 The Consequence: A Disciplined Approach to Identifying and Managing Software Risks
	4.9.4 The SEI Contribution
	4.9.5 References

	4.10 Personal Software Process and Team Software Process
	4.10.1 The Challenge: Improving Software Quality During Development
	4.10.2 A Solution: Personal Software Process and Team Software Process
	4.10.3 The Consequence: Improved Quality at the Individual and Team Levels
	4.10.4 The SEI Contribution
	4.10.5 References

	4.11 Measurement and Analysis
	4.11.1 The Challenge: Measuring Software Development Capabilities and Products
	4.11.2 A Solution: Approaches for Collecting and Analyzing Data
	4.11.3 The Consequence: Effective, Quantitative Basis for Improvement
	4.11.4 The SEI Contribution
	4.11.5 References

	4.12 Developing a Measurement System That Supports an Organization’s Goals
	4.12.1 The Challenge: Software Project Measurements That Support Business Goals
	4.12.2 A Solution: Goal-Driven Software Measurement—Goal-Question-Indicator
	4.12.3 The Consequence: Successful Measurement Processes That Support an Organization’s Business Goals
	4.12.4 The SEI Contribution
	4.12.5 References

	5 Security
	5.0 Introduction to Security
	5.0.1 Genesis of the CERT Coordination Center
	5.0.2 Evolution of the CERT Division
	5.0.3 Range of Issues
	5.0.4 References

	5.1 CERT Coordination Center
	The Challenge: Responding to Internet Security Incidents
	5.1.1 A Solution: Coordinating Incident Response
	5.1.2 The Consequence: Knowledgeable Incident Responders, Coordinated Response
	5.1.3 The SEI Contribution
	5.1.4 References

	5.2 Vulnerability Analysis and Remediation
	5.2.1 The Challenge: Software Vulnerabilities
	5.2.2 A Solution: Vulnerability Analysis, Remediation, and Discovery
	5.2.3 The Consequence: Improved Vendor Practices, Well-Informed System Mangers
	5.2.4 The SEI Contribution
	5.2.5 References

	5.3 Malicious Code Analysis
	5.3.1 The Challenge: Malicious Code
	5.3.2 A Solution: Malicious Code Database and Analysis
	5.3.3 The Consequence: Faster Response to Malicious Code Attacks, Better Control
	5.3.4 The SEI Contribution
	5.3.5 References

	5.4 Secure Coding
	5.4.1 The Challenge: Preventing Software Vulnerabilities
	5.4.2 A Solution: Secure Coding Standards and Practices
	5.4.3 The Consequence: More Secure Products
	5.4.4 The SEI Contribution
	5.4.5 References

	5.5 Network Situational Awareness
	5.5.1 The Challenge: Visibility of Large Networks
	5.5.2 A Solution: Network Situational Awareness Tools and Techniques
	5.5.3 The Consequence: Improved Situational Awareness with SEI Tools
	5.5.4 The SEI Contribution
	5.5.5 References

	5.6 Insider Threat
	5.6.1 The Challenge: Cyber Attacks by Insiders
	5.6.2 A Solution: Insider Threat Research and Solutions
	5.6.3 The Consequence: Improved Insider Threat Detection and Response
	5.6.4 The SEI Contribution
	5.6.5 References

	5.7 Information Security Assessments
	5.7.1 The Challenge: Managing Risks to Enterprise-Wide Information Security
	5.7.2 A Solution: Managing Risks to Enterprise-Wide Information Security
	5.7.3 The Consequence: Enterprise Risk Management and Security Improvement
	5.7.4 The SEI Contribution
	5.7.5 References

	5.8 Cybersecurity Engineering
	5.8.1 The Challenge: Software Security Assurance
	5.8.2 A Solution: Build In Security from the Start
	5.8.3 The Consequence: Improved Software Development and Acquisition Practices
	5.8.4 The SEI Contribution
	5.8.5 References

	6 Software Engineering Methods
	6.0 Introduction to Software Engineering Methods
	6.0.1 Demands of Increasing Reliance on Software Systems
	6.0.2 Evolving Software Configuration Management
	6.0.3 Developing Community Standards: Computer-Aided Software Engineering
	6.0.4 Developing Community Standards: Open Systems Engineering
	6.0.5 Aiding Understanding of Expanding Technology
	6.0.6 Managing and Engineering COTS-Based Systems
	6.0.7 Assurance Cases: Addressing Systems of Systems Challenges
	6.0.8 References

	6.1 Configuration Management
	6.1.1 The Challenge: Configuration Support for Software Developers
	6.1.2 A Solution: Configuration Management Tools
	6.1.3 The Consequence: Configuration Management and CM Tools in Common Practice
	6.1.4 The SEI Contribution
	6.1.5 References

	6.2 CASE Environments
	6.2.1 The Challenge: Making Smart Decision on Tools and Environments
	6.2.2 A Solution: CASE Tool Integration
	6.2.3 The Consequence: CASE Tools Widely Used in Practice
	6.2.4 The SEI Contribution
	6.2.5 References

	6.3 Software Technology Reference Guide
	6.3.1 The Challenge: Effective Software Technology Adoption
	6.3.2 A Solution: Software Technology Reference Guide
	6.3.3 The Consequence: Unbiased Information Used for Selecting Technology
	6.3.4 The SEI Contribution
	6.3.5 References

	6.4 Reengineering
	6.4.1 The Challenge: Legacy Software in Defense Systems
	6.4.2 A Solution: A Reengineering Center
	6.4.3 The Consequence: Effective Decision Making About Reengineering
	6.4.4 The SEI Contribution
	6.4.5 References

	6.5 Building and Fielding Interoperating Systems
	6.5.1 The Challenge: Interoperability in Evolving Defense Systems
	6.5.2 A Solution: Multi-Faceted Approach to Support for Interoperation
	6.5.3 The Consequence: Well-Informed Decisions Using Tools and Techniques
	6.5.4 The SEI Contribution
	6.5.5 References

	6.6 Developing Systems with Commercial Off-the-Shelf Products
	6.6.1 The Challenge: Using Commercial Off-the-Shelf Products in Defense Systems
	6.6.2 A Solution: Tools and Guidance for Improved Use of COTS Products
	6.6.3 The Consequence: Effective Use of COTS Products
	6.6.4 The SEI Contribution
	6.6.5 References

	6.7 Assurance Cases
	6.7.1 The Challenge: Confidence in the Behavior of Performance-Critical Systems
	6.7.2 A Solution: Assurance Cases
	6.7.3 The Consequence: Assurance Cases Used in Practice
	6.7.4 The SEI Contribution
	6.7.5 References

	7 Architecture
	7.0 Introduction to Software Architecture
	7.0.1 Seemingly Independent Efforts Prepared the SEI for an Early Consideration of Software Architecture
	7.0.2 Emergence of Architecture as a Separate and Well-Defined Area
	7.0.3 Introduction of the Notion of Software Product Lines and Associated Practices
	7.0.4 Broad Use of SEI Approaches to Software Architecture
	7.0.5 References

	7.1 Structural Modeling
	7.1.1 The Challenge: Efficiently Replicating Aircrew Trainers
	7.1.2 A Solution: Structural Modeling
	7.1.3 The Consequence: Efficient Reuse of a Reference Model for Aircrew Trainers
	7.1.4 The SEI Contribution
	7.1.5 References

	7.2 Federal Aviation Administration Study
	7.2.1 The Challenge: Evaluate a Problematic FAA System Under Development
	7.2.2 A Solution: SEI Architecture Evaluation Methods
	7.2.3 The Consequence: Successful FAA System Upgrade
	7.2.4 The SEI Contribution
	7.2.5 References

	7.3 Reducing the Cost of Modifying the User Interface
	7.3.1 The Challenge: Cost-Effectively Modifying User Interfaces for Defense Systems
	7.3.2 A Solution: The Serpent User Interface Management System
	7.3.3 The Consequence: Understanding the Relationship Between the User Interface and Software Architecture
	7.3.4 The SEI Contribution
	7.3.5 References

	7.4 Software Architecture Analysis Method
	7.4.1 The Challenge: Predicting Systems Development Problems in Advance
	7.4.2 A Solution: The Software Architecture Analysis Method
	7.4.3 The Consequence: Robust Multi-Quality Architectural Evaluation Method
	7.4.4 The SEI Contribution
	7.4.5 References

	7.5 Quality Attributes
	7.5.1 The Challenge: Meet the Non-Functional Requirements of Software Systems
	7.5.2 A Solution: Focus on Tradeoffs Among Quality Attributes
	7.5.3 The Consequence: Quality Attributes Reliably Identified, Added to Specifications
	7.5.4 The SEI Contribution
	7.5.5 References

	7.6 Architecture Tradeoff Analysis Method
	7.6.1 The Challenge: Determining the Best Architectural Design for Defense Systems
	7.6.2 A Solution: The Architecture Tradeoff Analysis Method
	7.6.3 The Consequence: Effective Evaluation of Architecture Designs
	7.6.4 The SEI Contribution
	7.6.5 References

	7.7 Feature-Oriented Domain Analysis
	7.7.1 The Challenge: Achieve Cost Reductions By Means of Software Reuse
	7.7.2 A Solution: Feature-Oriented Domain Analysis
	7.7.3 The Consequence: Application to Reuse and a Product Lines Approach
	7.7.4 The SEI Contribution
	7.7.5 References

	7.8 Software Product Lines
	7.8.1 The Challenge: Achieve Reuse That Pays
	7.8.2 A Solution: Software Product Lines
	7.8.3 The Consequences: Product Line Use Expands and Provides Benefits
	7.8.4 The SEI Contribution
	7.8.5 References

	8 Forensics
	8.0 Introduction to Computer Forensics: Digital Intelligence and Investigation
	8.0.1 SEI Entry into Digital Intelligence and Investigation
	8.0.2 Evolution of the SEI Approach
	8.0.3 Influence on the State of the Practice
	8.0.4 Keeping Up with Changes in Cybercrime
	8.0.5 References

	8.1 Operational Support for Digital Intelligence and Investigation
	8.1.1 The Challenge: Catching and Convicting Perpetrators of Cyber Attacks
	8.1.2 A Solution: Tools and Techniques for Digital Investigations
	8.1.3 The Consequence: Cyber Attackers Are Caught and Prosecuted
	8.1.4 The SEI Contribution
	8.1.5 References

	8.2 Digital Intelligence and Investigation Methods and Tools
	8.2.1 The Challenge: Effective and Efficient Cyber Forensics
	8.2.2 A Solution: Tools and Methods that Improve the State of the Practice
	8.2.3 The Consequence: Cyber Criminals Are Caught Early and Prosecuted
	8.2.4 The SEI Contribution
	8.2.5 References

	9 The Future of Software Engineering
	9.1 A Vision of the Future of Software Engineering
	9.1.1 Software and Defense
	9.1.2 The SEI Role
	9.1.3 Looking Ahead
	9.1.4 Reference

	10 Conclusion
	10.1 Leading the Community
	10.2 Highlighting 30 Years of Contributing to DoD Software Capability
	10.2.1 Real-Time Embedded and Cyber-Physical Systems
	10.2.2 Software Engineering Education and Training
	10.2.3 Management
	10.2.4 Security
	10.2.5 Engineering Methods
	10.2.6 Software Architecture
	10.2.7 Computer Forensics

	10.3 Direct Support to Government Systems Developers
	10.3.1 References

	10.4 An Experienced Staff Well Positioned to Continue Leadership
	10.5 External Evaluations by DoD Sponsor
	10.6 A Vision for the Future of Software Engineering
	10.6.1 References

	Appendix Authors Contributing to this Report
	Untitled
	Untitled
	Untitled

